Physics, asked by nathandesouza178, 2 months ago

If "g" denotes acceleration due to gravity and "G" denotes gravitational constant then g/G
yields the dimension​

Answers

Answered by nirman95
9

Given:

'g' denotes Gravitational Acceleration, 'G' is Gravitational Constant.

To find:

Dimension of g/G ?

Calculation:

 \therefore \bigg \{ \dfrac{g}{G}  \bigg \}

  =  \bigg \{ \dfrac{{M}^{0} L{T}^{ - 2} }{ \bigg( \dfrac{f {d}^{2} }{ {m}^{2} }  \bigg)}  \bigg \}

  =  \bigg \{ \dfrac{{M}^{0} L{T}^{ - 2} }{ \bigg( \dfrac{ ML{T}^{ - 2} \times  {L}^{2} }{ {M}^{2} }  \bigg)}  \bigg \}

  =  \bigg \{ \dfrac{{M}^{0} L{T}^{ - 2} }{ \bigg( \dfrac{ M{L}^{3} {T}^{ - 2} }{ {M}^{2} }  \bigg)}  \bigg \}

  =  \bigg \{ \dfrac{{M}^{0} L{T}^{ - 2} }{ {M}^{ - 1} {L}^{3} {T}^{ - 2} }  \bigg \}

  =  \bigg \{{M}^{1} {L}^{ - 2} {T}^{ 0}\bigg \}

So, final answer is:

 \boxed{ \bf \dfrac{g}{G}  =  \bigg \{{M}^{1} {L}^{ - 2} {T}^{ 0}\bigg \}}

Similar questions