Physics, asked by aadityaraj1468, 19 days ago

If g is the acceleration due to gravity on the surface of earth, its value at a height equal to double the radius of earth is

please ans fast​

Attachments:

Answers

Answered by tarushiyadav12
1

Answer:

g/9

this is the correct answer

plz mark brainliest

Answered by vipinkumar212003
1

 \color{blue}\mathfrak{\underline{Acceleration \: due \: to \: gravity \: at \: the \: surface \: of \:the \:  earth}:} \\ g=G \frac{m}{ {R}^{2} }-(i)  \\  \color{blue}\mathfrak{\underline{Acceleration \: due \: to \: gravity \: at \:height \:equal \: to \: double \: the \: radius  \:  of \:the \:  earth}:}\\  \rightarrow Radius \: of \: the \: earth = R \\ \rightarrow Acceleration \: at  \: some\: height = 2R \\  \rightarrow Total \: distance \: from \: centre \: of \: the \: earth \\  to \:some \: point(say \: P) = R + 2R = 3R \\  \\ g' = G \frac{m}{ {(3R)}^{2} } \\ g' = G \frac{m}{ {9R}^{2} }-(ii) \\ \color{blue}\mathfrak{\underline{On \: divding \:  {eq}^{n}  \: (ii) \: by \: (i)}:} \\  \frac{g'}{g}  =  \frac{G \frac{m}{ {9R}^{2} }}{ G \frac{m}{ {R}^{2} }}  \\  \\ \frac{g'}{g}  =  \frac{1}{ 9} \\  \\ \color{green}  \rightarrow \boxed{ g' =  \frac{g}{9} }.Answer \\  \\ \red{\mathfrak{ \large{\underline{{Hope \: It \: Helps \: You}}}}} \\ \blue{\mathfrak{ \large{\underline{{Mark \: Me \: Brainliest}}}}}

Attachments:
Similar questions
Math, 9 months ago