If G is the centroid of a triangle ABC, then, prove analytically that,
triangle BCG = triangle CAG = triangle ABG
Answers
Answered by
4
Answer:
We know that, the median of a triangle divide it into two triangles of equal area.
In ΔABC, AD is the median
∴ ar (ΔABD) = ar (ΔACD) ...(1)
In ΔGBC, GD is the median.
∴ ar(ΔGBD) = ar(ΔGCD) ...(2)
Subtracting (2) from (1), we get
ar(ΔABD) – ar(ΔGBD) = ar(ΔACD) – ar(ΔGCD)
∴ ar(ΔAGB) = ar(ΔAGC) ...(3)
Similarly, ar(ΔAGB) = ar(ΔBGC) ...(4)
From (3) and (4), we get
ar(ΔAGB) = ar(ΔAGC) = ar(ΔBGC) ...(5)
Now, ar(ΔAGB) + ar(ΔAGC) + ar(ΔBGC) = ar(ΔABC)
⇒ ar(ΔAGB) + ar(ΔAGB) + ar(ΔAGB) = ar(ΔABC) (Using (5))
⇒ 3ar(ΔAGB) = ar(ΔABC)
⇒ ar(ΔAGB) .......(6)
From (5) and (6), we get
ar(ΔAGB) = ar (ΔAGC) = ar(ΔBGC)
Step-by-step explanation:
it is so big but I hope it will help you
Similar questions
Math,
2 months ago
Math,
2 months ago
Accountancy,
5 months ago
Science,
5 months ago
Chemistry,
11 months ago