Math, asked by Shubhendu8898, 1 year ago

If G is the centroid of triangle ABC , then find the value of
 \frac{AB^2+BC^2+CA^2}{AG^2+BG^2+CG^2}


Note : Answer can be single digit between 0 to 9


Anonymous: Is the value = 3?
Anonymous: ??

Answers

Answered by Anonymous
7
 <h4>REFER THE ATTACHED IMAGE. </h4>
Attachments:
Answered by Anonymous
7

Answer:

Answer is 3

Step-by-step explanation:

Let A (x1, y1), B(x2, y2) and C(x3, y3), be the vertices of ∆ABC.

Without the loss of Generality, assume the centroid of the ΔABC to be at the origin, i.e. G = (0, 0).

Centroid of the ∆ABC

⇒ x1 + x2 + x3 = 0 and y1 + y2 + y3 = 0

Squaring on both sides, we get

x1² + x2² + x3² + 2x1x2 + 2x2x3 + 2x3x1 = 0 and y1² + y2² + y3² + 2y1y2 + 2y2y3 + 2y3y1 = 0 … (1)

AB² + BC² + CA²

= [(x2 – x1)² + (y2 – y1)²] + [(x3 – x2)² + (y3 – y2)²] + [(x1 – x3)² + (y1 – y3)²]

= [(x1² + x2² – 2x1x2 + y1² + y2² – 2y1y2) + (x2² + x3² – 2x2x3 + y2² + y3² – 2y2y3) + (x1² + x3² – 2x1x3 + y1² + y3² – 2y1y3)

= (2x12 + 2x22 + 2x32 – 2x1x2 – 2x2x3 – 2x1x3) + (2y12 + 2y22 + 2y32 – 2y1y2 – 2y2y3 – 2y1y3)

= (3x12 + 3x22 + 3x32) + (3y12 + 3y22 + 3y32) (From (1))

= 3(x12 + x22 + x32) + 3(y12 + y22 + y32) … (2)

3(GA² + GB² + GC²)

= 3 [(x1 – 0)2 + (y1 – 0)2 + (x2 – 0)2 + (y2 – 0)2 + (x3 – 0)2 + (y3 – 0)2]

= 3 (x12 + y12 + x22 + y22 + x32 + y32)

= 3 (x12 + x22 + x32) + 3(y12 + y22 + y32) … (3)

From (2) and (3), we get

AB² + BC² + CA² = 3(GA² + GB² + GC²)

(AB² + BC² + CA²)/(GA² + GB² + GC²) = 3

Similar questions