Math, asked by motipur01, 10 months ago

if g:R-R:g(x)=4-x and (fog)(x)=11-2x, find f(x)​

Answers

Answered by BrainlyConqueror0901
11

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{f(x)=2x+3}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies g(x) = 4 - x \\  \\ \tt:  \implies fog(x) = 11 - 2x \\  \\ \red{\underline \bold{To \: Find :}} \\  \tt:  \implies f(x) = ?

• According to given question :

 \tt \circ \: Let \: f(x) = ax + b \\  \\  \bold{As \: we \: know \: that} \\  \tt:  \implies fog(x) = f(g(x)) \\  \\ \tt:  \implies 11 - 2x = f(4 - x) \\  \\ \tt:  \implies 11 - 2x = a(4 - x) +b \\  \\ \tt:  \implies 11 - 2x = 4a - ax + b \\  \\ \tt:  \implies 11 - 2x  =( 4a + b) - ax \\  \\  \text{Comparing \: both \: side} \\  \\ \tt:  \implies   - ax =  - 2x \\  \\  \green{\tt:  \implies a = 2 }\\  \\  \tt:  \implies 4a + b = 11 \\  \\ \tt:  \implies 4 \times 2 + b = 1 \\  \\  \green{\tt:  \implies b = 3} \\  \\   \green{\tt \therefore f(x) = 2x + 3}

Answered by ItzArchimedes
44

GIVEN:

  • fog( x ) = 11 - 2x
  • g( x ) = 4 - x

TO FIND:

  • f( x ) = ?

SOLUTION:

Let

  • f( x ) = ax + b

We know that

fog( x ) = f [g( x )]

Substituting the values we have

→ 11 - 2x = f( 4 - x )

→ 11 - 2x = a(4 - x) + b

→ 11 - 2x = 4a - ax + b

→ 11 - 2x = (4a + b) - ax

By comparing

-ax = - 2x

a = 2

__________

4a + b = 11

Substituting the value of a

→ 8 + b = 11

→ b = 11 - 8

→ b = 3

Hence, f(x) = 2x + 3

Similar questions