Math, asked by Anonymous, 1 month ago

If given that ;

 \bf {e}^{xyz} = u

Then Prove that ;

 { \bigstar { \underline { \boxed { \bf { \blue { \dfrac{\partial³}{\partial x . \partial y . \partial z } = ( 1 + 3xyz + x²y²z² ) u }}}}}}{\bigstar}

Answers

Answered by mathdude500
9

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:u =  {e}^{xyz}

On differentiating partially w. r. t. x, we get

\rm :\longmapsto\:\dfrac{\partial }{\partial x}u =  \dfrac{\partial }{\partial x}{e}^{xyz}  \:

We know

\boxed{ \tt{ \: \dfrac{d}{dx} {e}^{x}  =  {e}^{x} \: }}

So, using this, we get

\rm :\longmapsto\:\dfrac{\partial }{\partial x}u = {e}^{xyz} \dfrac{\partial }{\partial x}xyz  \:

\rm :\longmapsto\:\dfrac{\partial u}{\partial x} = {e}^{xyz} yz  \:

On differentiating partially both sides, w. r. t. y, we get

\rm :\longmapsto\:\dfrac{\partial }{\partial y}\dfrac{\partial u}{\partial x} = \dfrac{\partial }{\partial y}{e}^{xyz} yz  \:

\rm :\longmapsto\:\dfrac{ {\partial }^{2}u}{\partial x {\partial y} }  = yz\dfrac{\partial }{\partial y}{e}^{xyz} + {e}^{xyz}\dfrac{\partial }{\partial y}yz

\rm :\longmapsto\:\dfrac{ {\partial }^{2}u}{\partial x {\partial y} }  = yz{e}^{xyz}(xz) + {e}^{xyz}z

\rm :\longmapsto\:\dfrac{ {\partial }^{2}u}{\partial x {\partial y} }  =xy {z}^{2}  {e}^{xyz} + {e}^{xyz}z

\rm :\longmapsto\:\dfrac{ {\partial }^{2}u}{\partial x {\partial y} }  =(xy {z}^{2} + z){e}^{xyz}

On differentiating partially w. r. t. z, we get

\rm :\longmapsto\:\dfrac{ {\partial }^{3}u}{\partial x {\partial y} \partial z}  =\dfrac{\partial }{\partial z}(xy {z}^{2} + z){e}^{xyz}

\rm :\longmapsto\:\dfrac{ {\partial }^{3}u}{\partial x {\partial y} \partial z}  ={e}^{xyz}\dfrac{\partial }{\partial z}(xy {z}^{2} + z) + (xy {z}^{2} + z)\dfrac{\partial }{\partial z}{e}^{xyz}

\rm :\longmapsto\:\dfrac{ {\partial }^{3}u}{\partial x {\partial y} \partial z}  ={e}^{xyz}(2xyz + 1) + (xy {z}^{2} + z){e}^{xyz}(xy)

\rm :\longmapsto\:\dfrac{ {\partial }^{3}u}{\partial x {\partial y} \partial z}  ={e}^{xyz}(2xyz + 1) + ( {x}^{2} {y}^{2} {z}^{2} + xyz){e}^{xyz}

\rm :\longmapsto\:\dfrac{ {\partial }^{3}u}{\partial x {\partial y} \partial z}  =[2xyz + 1 + {x}^{2} {y}^{2} {z}^{2} + xyz]{e}^{xyz}

\rm :\longmapsto\:\dfrac{ {\partial }^{3}u}{\partial x {\partial y} \partial z}  =\bigg[ 1 + 3xyz + {x}^{2} {y}^{2} {z}^{2}\bigg]{e}^{xyz}

\rm :\longmapsto\:\dfrac{ {\partial }^{3}u}{\partial x {\partial y} \partial z}  =\bigg[ 1 + 3xyz + {x}^{2} {y}^{2} {z}^{2}\bigg]u

Hence,

 \red{\rm :\longmapsto\:\boxed{ \tt{ \: \dfrac{ {\partial }^{3}u}{\partial x {\partial y} \partial z}  =\bigg[ 1 + 3xyz + {x}^{2} {y}^{2} {z}^{2}\bigg]u \: }}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\red{\rm :\longmapsto\:\boxed{ \tt{ \:  \frac{ {\partial }^{2}u}{\partial x\partial y} =  \frac{ {\partial }^{2} u}{\partial y\partial x}  \: }}}

 \purple{\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}}

Similar questions