Math, asked by Anonymous, 2 days ago

If given that :-

 \quad \leadsto \quad { \bf q = t^{n} e^{\bigg(- \dfrac{r²}{4t} \bigg)} }

Then for what value of 'n' . The following equation will be satisfied ?

 \quad \leadsto \quad { \bf \dfrac{1}{r²} \cdot \dfrac{\partial}{\partial r} \bigg\{ r² \bigg( \dfrac{\partial q}{\partial r} \bigg) \bigg\} = \dfrac{\partial q}{\partial t}}

Attachments:

Answers

Answered by talpadadilip417
2

Step-by-step explanation:

Answer:

\boxed{\huge{\mathbb\red{REFERR \:TO\: THE\:\: ATTACHMENT }}}

Step-by-step explanation:

hope it help you.

thanks

Attachments:
Answered by mathdude500
10

\large\underline{\sf{Solution-}}

Given expression is

\rm \: q = t^{n} e^{\bigg(- \dfrac{r²}{4t} \bigg)} -  -  -  - (1) \\

On differentiating partially w. r. t. r, we get

\rm \: \dfrac{\partial }{\partial r} q = t^{n}\dfrac{\partial }{\partial r} e^{\bigg(- \dfrac{r²}{4t} \bigg)} \\

\rm \: \dfrac{\partial q}{\partial r} = t^{n} e^{\bigg(- \dfrac{r²}{4t} \bigg)}\dfrac{\partial }{\partial r}\bigg( - \dfrac{ {r}^{2} }{4t} \bigg)  \\

\rm \: \dfrac{\partial q}{\partial r} =  q\bigg( - \dfrac{ 2r }{4t} \bigg)  \\

\rm \: \dfrac{\partial q}{\partial r} =  q\bigg( - \dfrac{ r }{2t} \bigg)  \\

\rm \: \dfrac{\partial q}{\partial r} =   - \dfrac{ qr }{2t}   -  -  -  - (i)\\

So,

\rm \: {r}^{2}  \dfrac{\partial q}{\partial r} =   - \dfrac{ q {r}^{3}}{2t}  \\

On differentiating both sides w. r. t. r, we get

\rm \:\dfrac{\partial }{\partial r}\bigg( {r}^{2}  \dfrac{\partial q}{\partial r} \bigg)=   - \bigg(\dfrac{3 q {r}^{2}}{2t} + \dfrac{ {r}^{3} }{2t}\dfrac{\partial q}{\partial r} \bigg)   \\

\rm\implies \:\rm \:\dfrac{1}{ {r}^{2} } \dfrac{\partial }{\partial r}\bigg( {r}^{2}  \dfrac{\partial q}{\partial r} \bigg)=   - \bigg(\dfrac{3 q }{2t} + \dfrac{ r }{2t}\dfrac{\partial q}{\partial r} \bigg)  -  -  - (2)  \\

Now, Consider again

\rm \: q = t^{n} e^{\bigg(- \dfrac{r²}{4t} \bigg)}  \\

On differentiating both sides w. r. t. t, we get

\rm \: \dfrac{\partial }{\partial t}q =\dfrac{\partial }{\partial t} t^{n} e^{\bigg(- \dfrac{r²}{4t} \bigg)}  \\

\rm \: \dfrac{\partial q}{\partial t} =  t^{n}\dfrac{\partial }{\partial t} e^{\bigg(- \dfrac{r²}{4t} \bigg)} +  e^{\bigg(- \dfrac{r²}{4t} \bigg)}\dfrac{\partial }{\partial t} {t}^{n} \\

\rm \: =  t^{n} e^{\bigg(- \dfrac{r²}{4t} \bigg)}\dfrac{\partial }{\partial t}\bigg( - \dfrac{ {r}^{2} }{4t}  \bigg) +  e^{\bigg(- \dfrac{r²}{4t} \bigg)}(n {t}^{n - 1}) \\

\rm \: =  q\bigg(\dfrac{ {r}^{2} }{4 {t}^{2} }  \bigg) + \dfrac{n {t}^{n} }{t}  e^{\bigg(- \dfrac{r²}{4t} \bigg)} \\

\rm \: =  q\bigg(\dfrac{ {r}^{2} }{4 {t}^{2} }  \bigg) + \dfrac{nq}{t}  \\

\rm \: =  \dfrac{q {r}^{2} }{4 {t}^{2} }   + \dfrac{nq}{t}  \\

\rm\implies \:\rm \:\dfrac{\partial \: q }{\partial t} =  \dfrac{q {r}^{2} }{4 {t}^{2} }   + \dfrac{nq}{t} -  -  - (3)  \\

According to statement,

\rm \:  \quad { \bf \dfrac{1}{r²} \cdot \dfrac{\partial}{\partial r} \bigg\{ r² \bigg( \dfrac{\partial q}{\partial r} \bigg) \bigg\} = \dfrac{\partial q}{\partial t}} \\

On substituting the values from equation (2) and (3), we get

\rm \: - \bigg(\dfrac{3 q }{2t} + \dfrac{ r }{2t}\dfrac{\partial q}{\partial r} \bigg) = \dfrac{q {r}^{2} }{4 {t}^{2} }   + \dfrac{nq}{t}

On substituting the value from equation (i), we get

\rm \: - \bigg(\dfrac{3 q }{2t} -  \dfrac{q {r}^{2} }{ {4t}^{2} }\bigg) = \dfrac{q {r}^{2} }{4 {t}^{2} }   + \dfrac{nq}{t}

\rm \: - \dfrac{3 q }{2t} +  \dfrac{q {r}^{2} }{ {4t}^{2} } = \dfrac{q {r}^{2} }{4 {t}^{2} }   + \dfrac{nq}{t}

\rm \: - \dfrac{3 q }{2t}  =  \dfrac{nq}{t}

\rm\implies \:n \:  =  \:  -  \: \dfrac{3}{2}  \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

FORMULAE USED

\rm \: \dfrac{d}{dx} {e}^{x}  =  {e}^{x}  \:  \\

\rm \: \dfrac{d}{dx} {x}^{n}  =  {nx}^{n - 1}  \:  \\

\rm \: \dfrac{d}{dx}uv = u\dfrac{d}{dx}v \:  +  \: v\dfrac{d}{dx}u \\

\rm \: \dfrac{d}{dx}k \: f(x) = k \: \dfrac{d}{dx}f(x) \\

Similar questions