Math, asked by krishnendu94, 7 months ago

if given that-
x - iy =  \sqrt{ \frac{a - i}{c - id} }
then prove that -
 {x}^{2}  +  {y}^{2}  =  \sqrt{ \frac{ {a}^{2}  +  {b}^{2} }{ {c}^{2}  +  {d}^{2} } }


Answers

Answered by BrainlyPopularman
13

GIVEN :

 \\ \implies \bf x - iy = \sqrt{ \dfrac{a - ib}{c - id}} \\

TO PROVE :

 \\ \implies \bf {x}^{2} +  {y}^{2} = \sqrt{ \dfrac{ {a}^{2} + {b}^{2} }{{c}^{2} + {d}^{2}}} \\

SOLUTION :

 \\ \implies \bf x - iy = \sqrt{ \dfrac{a - ib}{c - id}}  -  -  - eq.(1) \\

• Replace i with -i :–

 \\ \implies \bf x - ( - i)y = \sqrt{ \dfrac{a -( - i)b}{c -( - i)d}}\\

 \\ \implies \bf x + iy = \sqrt{ \dfrac{a +ib}{c + id}} \:  \:  \:  -  -  - eq.(2)\\

• Now multiply eq.(1) & eq.(2) –

 \\ \implies \bf(x - iy)(x + iy)= \sqrt{ \dfrac{a - ib}{c - id}} \sqrt{ \dfrac{a +ib}{c + id}}\\

 \\ \implies \bf(x - iy)(x + iy)= \sqrt{ \dfrac{(a - ib)(a +ib)}{(c - id)(c + id)}}\\

• Using identity –

 \\ \implies \bf(a-b)(a+b)= {a}^{2} -  {b}^{2} \\

 \\ \implies \bf{(x)}^{2}  - (iy)^{2}= \sqrt{ \dfrac{(a)^{2}  - (ib)^{2}}{(c)^{2}  - (id)^{2}}}\\

 \\ \implies \bf{(x)}^{2}  - (i)^{2} (y)^{2}= \sqrt{ \dfrac{(a)^{2}  - (i)^{2} (b)^{2}}{(c)^{2}  - (i)^{2} (d)^{2}}}\\

• We know that –

 \\ \longrightarrow \bf(i)^{2} =  - 1\\

 \\ \implies \bf{(x)}^{2}  - ( - 1) (y)^{2}= \sqrt{ \dfrac{(a)^{2}  - ( - 1) (b)^{2}}{(c)^{2}  - ( - 1)(d)^{2}}}\\

 \\ \implies \bf {x}^{2} +  {y}^{2} = \sqrt{ \dfrac{ {a}^{2} + {b}^{2} }{{c}^{2} + {d}^{2}}} \\

 \\ \large \longrightarrow{ \boxed{\bf Hence \:  \: Proved  }}\\


EliteSoul: Great
BrainlyPopularman: Thank you ♥️
Answered by Anonymous
3

so this is your answer ..

..

hope it is helpful...

Attachments:
Similar questions