Math, asked by Anonymous, 5 days ago

If given that y = x ( arcsin x ) + √( 1 - x² ) . Prove thT y' = arcsin x​

Answers

Answered by Anonymous
6

Topic - Differentiation

Explanation:

We are given that \rm y = x(sin^{-1}x) + \sqrt{1-x^2}. We need to prove that \rm y' = sin^{-1}x.

We will use the following rules of derivative to solve the given problem:

\boxed{\begin{array}{lcc}\rm\dfrac{d}{dx}\{x^n\} = n\cdot x^{n-1} \\  \\\rm\dfrac{d}{dx} \{\sqrt{x}\} = \dfrac{1}{2\sqrt{x}}\\\\  \rm \dfrac{d}{dx} \{f(x)  \pm g(x) \} =  \dfrac{d}{dx} \{ f(x)\} \pm \dfrac{d}{dx} \{ g(x)\} \\  \\  \rm \dfrac{d}{dx} \{f(x) \cdot g(x)\} = f'(x) \cdot g(x) + f(x) \cdot g'(x) \\\\ \rm\dfrac{d}{dx} \{f(g(x))\}= f'(g(x)) \cdot g'(x)\\\\ \rm\dfrac{d}{dx} \{sin^{-1}x\}=\dfrac{1}{\sqrt{1-x^2}}\end{array}}

So let's solve the given problem!

We have,

 \tt\implies y \prime = x( {sin}^{ - 1} (x)) +  \sqrt{1 - {x}^{2} }

Differentiation both sides w.r.t. x will give us,

 \tt \implies y  \prime=  \dfrac{d}{dx} \left \{x( {sin}^{ - 1} (x)) +  \sqrt{1 - {x}^{2} }  \right \}

 \tt \implies y  \prime=  \dfrac{d}{dx} \left \{x( {sin}^{ - 1} (x))  \right\} +  \dfrac{d}{dx} \left \{ \sqrt{1 - {x}^{2} }  \right \}

\tt \implies y  \prime= {sin}^{ - 1} (x) \cdot \dfrac{d}{dx}  \{x \} +  x \cdot \dfrac{d}{dx} \{   {sin}^{ - 1}(x) \}  +  \dfrac{1}{2 \sqrt{1 - {x}^{2} }}  \cdot \dfrac{d}{dx} \{ 1 -  {x}^{2} \}

\tt \implies y  \prime= {sin}^{ - 1} (x) \cdot (1) +  x \cdot \dfrac{1}{ \sqrt{1 -  {x}^{2} } }  +   \dfrac{1}{2 \sqrt{1 - {x}^{2} }}  \cdot  \left(\dfrac{d}{dx} \{ 1 \} - \dfrac{d}{dx} \{  {x}^{2} \} \right)

\tt \implies y  \prime= {sin}^{ - 1} (x) + \dfrac{x}{ \sqrt{1 -  {x}^{2} } }  +   \dfrac{1}{2 \sqrt{1 - {x}^{2} }} \left( 0 - 2x\right)

\tt \implies y  \prime= {sin}^{ - 1} (x) + \dfrac{x}{ \sqrt{1 -  {x}^{2} } }  +   \dfrac{1}{ \not2 \sqrt{1 - {x}^{2} }} \left( -  \not2x\right)

\tt \implies y  \prime= {sin}^{ - 1} (x) + \dfrac{x}{ \sqrt{1 -  {x}^{2} } }   -  \dfrac{ x}{ \sqrt{1 - {x}^{2} }}

 \boxed{\red{  \tt\implies y  \prime= {sin}^{ - 1} (x)}}

Hence proved.

Similar questions