Math, asked by ayeshaz4hid, 1 day ago

if H is inversely proportional to (2p-3)^3 and H=-5 when p=1 find (i) the value of H when p=2.5 (ii)the value of p when H= 5/27

Answers

Answered by rambabu083155
1

Answer:

( i )  if  p = 2.5 , ∴ H = 0.625   ( ii ) if  H = \frac{5}{27}    ,    ∴ p = 0

Step-by-step explanation:

Given,

H is inversely proportional to (2p-3)^{3}

i.e,  H = \frac{K}{(2p-3)^{3}}

If  H=-5 and p=1

then,

    K = H(2p-3)^{3}

⇒ K = 5 (2*1-3)^3

⇒ K = 5(-1)^3

∴  K = - 5

Now

( i )  if  p = 2.5

Then,     H = \frac{K}{(2p-3)^{3}}

        ⇒ H = \frac{-5}{(2*2.5-3)^{3}}

       ⇒ H = \frac{-5}{(2)^{3}}

       ⇒ H = \frac{-5}{8}

        ∴ H = 0.625

( ii ) if  H = \frac{5}{27}

Then, H = \frac{K}{(2p-3)^{3}}

        {(2p-3)^{3}} = \frac{K}{H}

        {(2p-3)^{3}} = \frac{-5}{\frac{5}{27} }

        {(2p-3)^{3}} = - 27

        {(2p-3)^{3}} = - 3^{3}

Here power are same, so equating the base

       (2p - 3) = - 3

       ∴ p = 0

Similar questions