Math, asked by zenorai255, 6 months ago

if h, s, v be the height,csa and volume respectively of a cone,then(3πvhcube-Ssquarehsquare+9vsquare is equal to​

Answers

Answered by Anonymous
55

Answer:

Given

Height of cone = h

CSA of cone = s

Volume of Cone = v

Find

{ \sf(3\pi \: v {h}^{3} -  {s}^{2}  {h}^{2}  + 9 {v}^{2}  )}

Solution

{ \sf{ \to{area \: of \: cone \:  = \pi \: r \sqrt{ {h}^{2}  +  {r}^{2} } }}}

{ \to{ \sf{volume \:  \: of \:  \: cone =  \frac{\pi}{3}  {r}^{2} h}}}

{ \sf{ \to{3\pi \: v {h}^{3}  + 9 {v}^{2} -  {s}^{2}  {h}^{2}  }}}

{ \to{ \sf{(3\pi \:   \times  \frac{\pi}{3}  \times  {r}^{2} h \times  {h}^{3}) + 9(  { \frac{\pi}{3}) }^{2}   {r}^{4}  {h}^{2}  -  {\pi}^{2} {r}^{2}( {h}^{2}  +  {r}^{2}  ) \times  {h}^{2}   }}}

{ \to{ \sf{ {\pi}^{2}  {r}^{2}  {h}^{2}( {h}^{2} +  {r}^{2}   -  {h}^{2}  -  {r}^{2}  )}}}

{ \to{ \sf{0}}}

{ \boxed{ \therefore{ \sf{3\pi \: v {h}^{3} + 9 {v}^{3}  -  {s}^{2}  {h}^{2} = 0  }}}}

Similar questions