Science, asked by ofsharazinformation, 3 months ago


If helium or barilium is added to carbon banta h or a neutron is extracted, then how can we convert any element per neutron to ham au (gold)?​

Answers

Answered by MrkhiIadi
2

Answer:

Nuclear transmutation is the conversion of one chemical element or an isotope into another chemical element.Because any element (or isotope of one) is defined by its number of protons (and neutrons) in its atoms, i.e. in the atomic nucleus, nuclear transmutation occurs in any process where the number of protons or neutrons in the nucleus is changed.

A transmutation can be achieved either by nuclear reactions (in which an outside particle reacts with a nucleus) or by radioactive decay, where no outside cause is needed.

Explanation:

Answered by riyansikasahni201403
0

Answer:

Nuclear transmutation is the conversion of one chemical element or an isotope into another chemical element.[1] Because any element (or isotope of one) is defined by its number of protons (and neutrons) in its atoms, i.e. in the atomic nucleus, nuclear transmutation occurs in any process where the number of protons or neutrons in the nucleus is changed.

A transmutation can be achieved either by nuclear reactions (in which an outside particle reacts with a nucleus) or by radioactive decay, where no outside cause is needed.

Natural transmutation by stellar nucleosynthesis in the past created most of the heavier chemical elements in the known existing universe, and continues to take place to this day, creating the vast majority of the most common elements in the universe, including helium, oxygen and carbon. Most stars carry out transmutation through fusion reactions involving hydrogen and helium, while much larger stars are also capable of fusing heavier elements up to iron late in their evolution.

Elements heavier than iron, such as gold or lead, are created through elemental transmutations that can only naturally occur in supernovae. As stars begin to fuse heavier elements, substantially less energy is released from each fusion reaction. Reactions that produce elements heavier than iron are endothermic and unable to generate the energy required to maintain stable fusion inside the star.

Explanation:

mark as brainiest and follow me

Similar questions