Math, asked by sheoranprateek, 1 year ago

If here is anyone who can solve my question correctly I challenge you 9^2 + 11^2 +13^2+...................to n terms if anyone can solve I think that person genius


Fortunegiant: do we need to find sum
sheoranprateek: we have find the value of tgis
sheoranprateek: this

Answers

Answered by Lohith154
0

We have a formula of sum of squares of odd nos=n(n+1)(2n+1)/6


But here is cannot substitute n...

Because the series starts from 9

Therefore for e for the above series ..

It would be the total sum of squares of all the n odd nos -(1^2+3^2+5^2+7^2)

=>



But the number of terms is also not simply n....but it would be n+4

By substituting

We get ...

((n+4)(n+5)(2n+5)/6)-(4(4+1)(2(4)+1)/6)

((n+4)(n+5)(2n+5)/6)-(4(5)(9)/6)

((n+4)(n+5)(2n+5)/6)-(30)

Hope it helps ....

Pls mark me as brainliest plsss



sheoranprateek: Hey Friend answer is wrong
sheoranprateek: try it again
Answered by pulakmath007
47

\displaystyle\huge\red{\underline{\underline{Solution}}}

FORMULA TO BE IMPLEMENTED

1. Sum of the first n natural numbers :

 \displaystyle \: 1 + 2 + 3 + .... + n =  \frac{n(n + 1)}{2}

2. Sum of the squares of first n natural numbers :

  \displaystyle \:{1}^{2}  +  {2}^{2}  +  {3}^{2}  + .... +  {n}^{2}  =  \frac{n(n + 1)(2n + 1)}{6}

TO DETERMINE

 {9}^{2}  +  {11}^{2}  +  {13}^{2}  + .........upto \:  \:  \:  \: n \: terms

EVALUATION

Let s be the sum and t_nbe the n th term

Then

t_n =  { \{ \: n \: th \:  \:  \: term \: of \: the \: AP  \: \: 9 \: , 11 \: , 13 , .......\}}^{2}

 \implies \: t_n =  { \{9 + (n - 1) \times 2 \}}^{2}

 \implies \: t_n =  {  (2n  + 7) }^{2}

 \implies \: t_n =  4 {n}^{2}  + 28n + 49

Putting n = 1, 2, 3,....... n we get

\: t_1=  4 \times  {1}^{2}  + 28 \times 1+ 49

\: t_2=  4 \times  {2}^{2}  + 28 \times 2+ 49

\: t_3=  4 \times  {3}^{2}  + 28 \times 3+ 49

.

.

.

.

\: t_n=  4 \times  {n}^{2}  + 28 \times n+ 49

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

On addition

\: t_1 +t_2 +t_3   + ... + t_n =   4 \times ( {1}^{2}  +  {2}^{2}  +  {3}^{2} + ... +   {n}^{2} ) + 28 \times (1 + 2 + 3 + ... + n )+ 49n

 \displaystyle \:  \implies \: s \:   =   4 \times  \frac{n(n + 1)(2n + 1)}{6} + 28 \times  \frac{n(n + 1)}{2} + 49n

 \displaystyle \:  \implies \: s \:   =   2 \times  \frac{n(n + 1)(2n + 1)}{3} + 14 \times  {n(n + 1)} + 49n

 \displaystyle \:  \implies \: s \:   =   2n(n + 1) \{ \frac{2n + 1}{3} +  7 \}+ 49n

 \displaystyle \:  \implies \: s \:   =   2n(n + 1)( \frac{2n + 22}{3})+ 49n

 \displaystyle \:  \implies \: s \:   =   4n(n + 1)( \frac{n + 11}{3})+ 49n

 \displaystyle \:  \implies \: s \:   =  n( \frac{ 4{n}^{2} + 48n + 44 + 147 }{3} )

 \displaystyle \:  \implies \: s \:   =  n( \frac{ 4{n}^{2} + 48n + 191 }{3} )

 \displaystyle \:  \implies \: s \:   =  \frac{ 4{n}^{3} + 48 {n}^{2} + 191n }{3}

RESULT

The required sum is

 \displaystyle \: =  \frac{ 4{n}^{3} + 48 {n}^{2} + 191n }{3}

Similar questions