Math, asked by arpitgupta4184, 4 months ago

if hypernews and base of a right angle are 10cm and 8cm are respectievly find its area.​


vaishnavachuparambil: Given the base of a right angled triangle is 8 m and its hypotenuse is 10 m
Then height =
(10)
2
−(8)
2


=
100−64

=
36

=6 cm
Then area of triangle =
2
1

×8×6=24 sq cm

Answers

Answered by ShírIey
80

Appropriate Question:

  • If Hypotenuse and Base of a right angle are 10cm and 8cm are respectively find its area.

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━⠀⠀

\frak{Given}\begin{cases}\sf{\:\:\: Hypotenuse = 10 \ cm}\\\sf{\:\:\: Base = 8 \ cm}\end{cases}

Need to find: Area of triangle.

☯ Let the Height be h cm.

⠀⠀⠀

\underline{\bigstar\:\boldsymbol{Using\: Pythagoras \ theorem\::}}\\ \\⠀⠀⠀

⠀⠀⠀⠀⠀⠀

\star\;\boxed{\sf{\pink{(Hypotenuse)^2 = (Base)^2 + (Height)^2}}}

⠀⠀⠀

:\implies\sf (10)^2 = (8)^2 + (h)^2 \\\\\\:\implies\sf 100 = 64 + h^2 \\\\\\:\implies\sf  100 - 64 = h^2\\\\\\:\implies\sf  36 = h^2\\\\\\:\implies\sf   h = \sqrt{36}\\\\\\:\implies{\underline{\boxed{\sf{\pink{ h = 6 \ cm}}}}}\:\bigstar

\therefore\:{\underline{\sf{Hence, \ Height \ of \ the \ \triangle \ is \ \bf{6 \ cm}.}}}⠀⠀

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━⠀⠀

⠀⠀⠀⠀

\star\:\boxed{\sf{\purple{Area_{\triangle} = \dfrac{1}{2} \times Height \times Base}}}\\\\\\:\implies\sf Area_{\triangle} = \dfrac{1}{\cancel{\: 2}} \times 6 \times \cancel{\:8} \\\\\\:\implies\sf Area_{\triangle} =  6 \times 4\\\\\\:\implies{\underline{\boxed{\frak{\pink{ Area_{\triangle} =  24 \ cm^2}}}}}\:\bigstar

⠀⠀⠀

\therefore\:{\underline{\sf{Hence, \ area \ of \ the \ \triangle \ is \ \bf{24 \ cm^2}.}}}⠀⠀⠀

Answered by INSIDI0US
100

Step-by-step explanation:

\frak Given = \begin{cases} &\sf{Hypotenuse\ of\ the\ right\ angled\ triangle\ =\ 10cm.} \\ &\sf{Base\ of\ the\ right\ angled\ triangle\ =\ 8cm.} \end{cases}

To find:- We have to find the area of the right angled triangle ?

☯️ In this question, the height of the triangle is not given. So, to find the area of the triangle first let us find out the height.

__________________

 \frak{\underline{\underline{\dag As\ we\ know\ that:-}}}

 \sf : \implies {Pythagoras\ Theorem\ =\ a^2\ +\ b^2\ =\ c^2.}

Here:-

  • a, is for height.
  • b, is for base.
  • c, is for hypotenuse.

__________________

 \frak{\underline{\underline{\dag By\ substituting\ the\ values,\ we\ get:-}}}

 \sf : \implies {a^2\ +\ b^2\ =\ c^2} \\ \\ \sf : \implies {a^2\ +\ 8^2\ =\ 10^2} \\ \\ \sf : \implies {a^2\ +\ 64\ =\ 100} \\ \\ \sf : \implies {a^2\ =\ 100\ -\ 64} \\ \\ \sf : \implies {a^2\ =\ 36} \\ \\ \sf : \implies {a\ =\ \sqrt{36}} \\ \\ \sf : \implies {\purple{\underline{\boxed{\bf a\ =\ 6cm.}}}}\bigstar

Hence:-

 \sf \therefore {\underline{The\ required\ height\ of\ the\ triangle\ is\ 6cm.}}

Now, finding the area of the triangle:-

__________________

 \frak{\underline{\underline{\dag As\ we\ know\ that:-}}}

 \sf : \implies {Area\ of\ triangle\ =\ \dfrac{1}{2}\ \times\ b\ \times\ h.}

Here:-

  • b, is for base.
  • h, is for height.

__________________

 \frak{\underline{\underline{\dag By\ substituting\ the\ values,\ we\ get:-}}}

 \sf : \implies {Area\ =\ \dfrac{1}{2}\ \times\ b\ \times\ h} \\ \\ \sf : \implies {\dfrac{1}{\cancel 2}\ \times\ \cancel 8\ \times\ 6} \\ \\ \sf : \implies {4\ \times\ 6} \\ \\ \sf : \implies {\purple{\underline{\boxed{\bf Area\ =\ 24cm^2.}}}}\bigstar

Hence:-

 \sf \therefore {\underline{The\ required\ area\ is\ 24cm^2.}}


HA7SH: Excellent answer : P
INSIDI0US: Thanks : D
Similar questions