Math, asked by llSarcasticAauratll, 2 months ago

if hypernews and base of a right angle are 10cm and 8cm are respectievly find its area.​

Answers

Answered by anisha11035
2

Answer:

Step-by-step explanation:

\frak Given = \begin{cases} &\sf{Hypotenuse\ of\ the\ right\ angled\ triangle\ =\ 10cm.} \\ &\sf{Base\ of\ the\ right\ angled\ triangle\ =\ 8cm.} \end{cases}

To find:- We have to find the area of the right angled triangle ?

☯️ In this question, the height of the triangle is not given. So, to find the area of the triangle first let us find out the height.

__________________

 \frak{\underline{\underline{\dag As\ we\ know\ that:-}}}

 \sf : \implies {Pythagoras\ Theorem\ =\ a^2\ +\ b^2\ =\ c^2.}

Here:-

a, is for height.

b, is for base.

c, is for hypotenuse.

__________________

 \frak{\underline{\underline{\dag By\ substituting\ the\ values,\ we\ get:-}}}

 \sf : \implies {a^2\ +\ b^2\ =\ c^2} \\ \\ \sf : \implies {a^2\ +\ 8^2\ =\ 10^2} \\ \\ \sf : \implies {a^2\ +\ 64\ =\ 100} \\ \\ \sf : \implies {a^2\ =\ 100\ -\ 64} \\ \\ \sf : \implies {a^2\ =\ 36} \\ \\ \sf : \implies {a\ =\ \sqrt{36}} \\ \\ \sf : \implies {\purple{\underline{\boxed{\bf a\ =\ 6cm.}}}}\bigstar

Hence:-

 \sf \therefore {\underline{The\ required\ height\ of\ the\ triangle\ is\ 6cm.}}

● Now, finding the area of the triangle:-

__________________

 \frak{\underline{\underline{\dag As\ we\ know\ that:-}}}

 \sf : \implies {Area\ of\ triangle\ =\ \dfrac{1}{2}\ \times\ b\ \times\ h.}

Here:-

b, is for base.

h, is for height.

__________________

 \frak{\underline{\underline{\dag By\ substituting\ the\ values,\ we\ get:-}}}

 \sf : \implies {Area\ =\ \dfrac{1}{2}\ \times\ b\ \times\ h} \\ \\ \sf : \implies {\dfrac{1}{\cancel 2}\ \times\ \cancel 8\ \times\ 6} \\ \\ \sf : \implies {4\ \times\ 6} \\ \\ \sf : \implies {\purple{\underline{\boxed{\bf Area\ =\ 24cm^2.}}}}\bigstar

Hence:-

 \sf \therefore {\underline{The\ required\ area\ is\ 24cm^2.}}

Similar questions