Math, asked by atharvayashwantrao38, 5 hours ago

If I = √-1 a n € N , then in + in + 1 + in + 2 + in + 3 is equal to ​

Answers

Answered by user0888
13

\rm\huge\red{\underline{\text{Proper question:-}}}

If \rm i^2=-1 and \rm n\in\mathbb{N}, find the value of \rm i^n+i^{n+1}+i^{n+2}+i^{n+3}.

\rm\Huge\red{\underline{\text{Idea:-}}}

\bold{Imaginary\ unit\ i}

We know that i^2=1 which is a definition of i.

\bold{Factorization}

The HCF of each term is i^n.

We can group the common factors by polynomial identity.

Which is,

\large\rightarrow\red{\boxed{\red{\bold{ak+bk=k(a+b)}}}}

\huge\red{\underline{\red{\text{Solution:-}}}}

Given number is,

\rm\rightarrow i^n+i^{n+1}+i^{n+2}+i^{n+3}

The HCF of each term is,

\rm\rightarrow i^n

So by grouping the common factor,

\rm\rightarrow i^n(i^0+i^1+i^2+i^3)

If we simplify,

\rm\rightarrow i^{n}(1+i-1-i)

\rm=i^{n}\cdot0

\rm=\red{\underline{\bold{0}}\tiny\text{//}}

So, the answer is 0.

\Huge\red{\underline{\red{\text{Learn more:-}}}}

\bold{Cycling\ powers\ of\ i}

\large\rightarrow\red{\boxed{\red{\bold{i^{4k}=1}}}}

\large\rightarrow\red{\boxed{\red{\bold{i^{4k+1}=i}}}}

\large\rightarrow\red{\boxed{\red{\bold{i^{4k+2}=-1}}}}

\large\rightarrow\red{\boxed{\red{\bold{i^{4k+3}=-i}}}}

k belongs to integers.

\bold{The\ cube\ roots\ of\ unity\ \omega}

The roots of the equation \rm x^3=1 contain exactly one real and two imaginary solutions.

\large\hookrightarrow\red{\boxed{\red{\bold{\omega=\dfrac{-1\pm\sqrt{3}i}{2}}}}}

\bold{Properties\ of\ \omega}

\large\rightarrow\red{\boxed{\red{\bold{\omega^{3k}=1}}}}

\rm k belongs to integers.

\large\rightarrow\red{\boxed{\red{\bold{\omega^2+\omega+1=0}}}}

\large\rightarrow\red{\boxed{\red{\bold{\omega+\bar{\omega}=-1}}}}

\large\rightarrow\red{\boxed{\red{\bold{\omega\bar{\omega}=1}}}}

\bold{Variations}

\large\rightarrow\red{\boxed{\red{\bold{\omega^{3k+1}=\omega}}}}

\large\rightarrow\red{\boxed{\red{\bold{\omega^{3k+2}=\omega^2}}}}

\large\rightarrow\red{\boxed{\red{\bold{\omega=\dfrac{1}{\bar{\omega}}}}}}

Answered by Anonymous
67

Answer:

.

  •  \red{ \boxed{ {\text{i}}^{\text{n}}  +  {\text{i}}^{\text{n} + 1}  +  {\text{i}}^{\text{n} + 2}  +  {\text{i}}^{\text{n} + 3} =  0} } \\

.

Step-by-step explanation:

.

 \hookrightarrow  \text{ i }=  \sqrt{ - 1}  \:  \:  \: \text{ ...(given)} \\

.

We can say that,

.

 \hookrightarrow { \text{ i }}^{2} = { - 1} \:  \:  \: ...(1) \\  \\

 \hookrightarrow  {\text{i}}^{\text{n}}  +  {\text{i}}^{\text{n} + 1}  +  {\text{i}}^{\text{n} + 2}  +  {\text{i}}^{\text{n} + 3} =  {\text{i}}^{\text{n}}  +  {\text{i}}^{\text{n} + 1}  +  {\text{i}}^{\text{n} + 2}  +  {\text{i}}^{\text{n} + 3}   \\

.

 \hookrightarrow  {\text{i}}^{\text{n}}  +  {\text{i}}^{\text{n} + 1}  +  {\text{i}}^{\text{n} + 2}  +  {\text{i}}^{\text{n} + 3} =  {\text{i}}^{\text{n}}  +  {\text{i}}^{\text{n}} \times  {\text{i} }^{1}  +  {\text{i}}^{\text{n}} \times  {\text{i} }^{2}   +  {\text{i}}^{\text{n} }  \times  {\text{i} }^{3}  \\

.

{Taking}   \: \: { \text{i}}^{ \text{n} } \:    {common,}

.

 \hookrightarrow  {\text{i}}^{\text{n}}  +  {\text{i}}^{\text{n} + 1}  +  {\text{i}}^{\text{n} + 2}  +  {\text{i}}^{\text{n} + 3} =  {\text{i}}^{\text{n}} (1 +  {\text{i} }  +   {\text{i} }^{2}   +    {\text{i} }^{3})  \\

.

 \hookrightarrow  {\text{i}}^{\text{n}}  +  {\text{i}}^{\text{n} + 1}  +  {\text{i}}^{\text{n} + 2}  +  {\text{i}}^{\text{n} + 3} =  {\text{i}}^{\text{n}} (1 +  {\text{i} }   - 1  +    {\text{i} }^{2 + 1})  \\

.

 \hookrightarrow  {\text{i}}^{\text{n}}  +  {\text{i}}^{\text{n} + 1}  +  {\text{i}}^{\text{n} + 2}  +  {\text{i}}^{\text{n} + 3} =  {\text{i}}^{\text{n}} (1 +  {\text{i} }   - 1  +    {\text{i} }^{2 } \times\text{i} )  \\

.

 \hookrightarrow  {\text{i}}^{\text{n}}  +  {\text{i}}^{\text{n} + 1}  +  {\text{i}}^{\text{n} + 2}  +  {\text{i}}^{\text{n} + 3} =  {\text{i}}^{\text{n}} ( \cancel{1} +   \sqrt{ - 1}   -  \cancel{1 } +    {\text{i} }^{2 } \times\text{i} )  \\

.

 \hookrightarrow  {\text{i}}^{\text{n}}  +  {\text{i}}^{\text{n} + 1}  +  {\text{i}}^{\text{n} + 2}  +  {\text{i}}^{\text{n} + 3} =  {\text{i}}^{\text{n}} (    \sqrt{ - 1}   +    - 1 \times( \sqrt{ - 1} ) )  \\

.

 \hookrightarrow  {\text{i}}^{\text{n}}  +  {\text{i}}^{\text{n} + 1}  +  {\text{i}}^{\text{n} + 2}  +  {\text{i}}^{\text{n} + 3} =  {\text{i}}^{\text{n}} (    \sqrt{ - 1} - 1( \sqrt{ - 1} ) )  \\

.

 \hookrightarrow  {\text{i}}^{\text{n}}  +  {\text{i}}^{\text{n} + 1}  +  {\text{i}}^{\text{n} + 2}  +  {\text{i}}^{\text{n} + 3} =  {\text{i}}^{\text{n}} (   \cancel { \sqrt{ - 1} }     -  \cancel{1( \sqrt{ - 1} )} )  \\

.

 \hookrightarrow  {\text{i}}^{\text{n}}  +  {\text{i}}^{\text{n} + 1}  +  {\text{i}}^{\text{n} + 2}  +  {\text{i}}^{\text{n} + 3} =  {\text{i}}^{\text{n}} (0)  \\

.

 \hookrightarrow  \red{ \boxed{ {\text{i}}^{\text{n}}  +  {\text{i}}^{\text{n} + 1}  +  {\text{i}}^{\text{n} + 2}  +  {\text{i}}^{\text{n} + 3} =  0} } \\

.

Similar questions