Math, asked by prakash6162, 1 year ago

If I tan theta is equal to 4 show that 5 sin theta minus 3 cos theta divided by 5 sin theta + 2 cos theta is equal to 1 by 6

Answers

Answered by Sharad001
62

  \red{ \huge \underline{\texttt{solution}}}

According to the question,

 \tan( \theta)  = 4 \\

We know that,

 \tan( \theta)  =  \frac{perpendicular}{base \: }  \\  \\  \tan( \theta)  =  \frac{4}{1}  = \frac{perpendicular}{base \: }  \:

Using Pythagoras theorem,

  \small\implies \:  {(hypt.)}^{2}  =  {(perpend.) }^{2}  +  {(base)}^{2}  \\  \\  \implies \:  {(hypt.)}^{2}  =16 + 1 \\  \\  \implies \: \boxed{ hypt. =  \sqrt{17} } \\  \\ hypt. = hypotenous \\  \\ perpend. = perpendicular

To Prove :-

 \frac{5 \sin( \theta)  - 3 \cos( \theta) }{5 \sin( \theta) + 2 \cos( \theta)  }  =  \frac{17}{22}  \\

Proof :-

 \because \: hypt. =  \sqrt{17} \:  \\ \:  \:  \:  \:  \:  perpend. = 4 \\  \:  \:  \:  \:  \:   base = 1  \\ then \\

We know that,

 \sin( \theta)  =  \frac{perpend.}{hypt.}  =  \frac{4}{ \sqrt{17} }  \\  \\  \cos( \theta)  =  \frac{base}{hypt.}  =  \frac{1}{ \sqrt{17} }

Now taking left hand side of ,

 \implies \: \frac{5 \sin( \theta)  - 3 \cos( \theta) }{5 \sin( \theta) + 2 \cos( \theta)  }   \\

Substitute the above values,

 \implies \:  \frac{5 \times  \frac{4}{ \sqrt{17}  } - 3 \times  \frac{1}{ \sqrt{17} }  }{5 \times  \frac{4}{ \sqrt{17} } + 2  \times \frac{1}{ \sqrt{17} }  }  \\  \\ \implies \:  \frac{ \frac{20 - 3}{ \sqrt{17} } }{ \frac{20 + 2}{ \sqrt{17} } }  \\  \\  \implies \:  \frac{17}{22}

Hence proved.

Check your question ,have some mistakes.

Similar questions