Math, asked by Nawabv544, 1 year ago

If I = \sum^{98}_{k 1}\int^{k + 1}_k \frac{k + 1}{x(x + 1)} dx, then
(A) 1 > log_e 99
(B) 1 < log_e 99
(C) 1 < \frac{49}{50}
(D) 1 > \frac{49}{50}

Answers

Answered by llSᴡᴇᴇᴛHᴏɴᴇʏll
3

\huge \fbox \blue{a} \fbox \purple{n} \fbox \green{s} \fbox \red{w} \fbox \pink{e} \fbox \orange{r}

 \\

\sf\underline\blue{Please \:  note :-}\sf{This \:  question \:  has\: }

\sf {multiple \:  correct  \: options!}

 \\

\sf{correct \: option \: is \: (d) I &gt;  \frac{49}{50}}⠀\sf{(a)\: I&gt; log_{e} \: 99}

\sf\longrightarrow\LARGE\underline\red{Explanation:-}

 \\

\sf ∫^{k + 1 }_{k} \: \sf\blue{\frac{k + 1}{x(x + 1)}}\sf \: {dx}

\sf = (k + 1) ∫^{k + 1}_{k} \:  \frac{(x + 1) - x}{x(x + 1)} \: dx

\sf = (k + 1) ∫^{k + 1}_{k} \:( \frac{1}{x}  -  \frac{1}{x + 1})dx

\sf =(k+1)[ln \: x \: − \: ln(x+1)] ^{ k+1}

\sf =(k+1)([ln(k+1)−ln(k+2)]^{k} −

\sf[ln \: k \: − \: ln(k+1)])

\sf =(k+1)(2ln(k+1) \: − \: ln(k(k+2))

\sf =(k+1)ln \:\left(\frac{(k \:  + \: 1)^{2}  }{k(k \: +  \: 2)}\right)

\sf{I \:  =}\sf\red{\sum^{98}_{k = 1}}\sf{\:  ∫ ^{k + 1}_{k}}\sf\blue{\frac{k \:  +  \: 1}{x(x  \: +  \: 1)}}\sf{\:dx}

\sf\red{\sum^{98}_{k = 1}}{\: (k + 1) \: In \: \left( \frac{k  \: +  \: 1}{k  \: +  \: 2}\right) - k \:  In\left(\frac{k}{ k \: +  \: 1}\right) -}

\sf\red{\sum^{98}_{k = 1}}\sf{In \: k \:  -  In \: (k \:  +  \: 1)}

\sf = \left(99 \ln \dfrac{99}{100} - \ln \dfrac{1}{2} \right) - (\ln 1 - \ln 99)

\sf =ln \: 99 \: − \: ln \:  \frac{1}{2}

\sf {I = In \: 198}

\therefore\sf (d) I &gt; \frac{49}{50}⠀ \sf (a) I &gt; \:  log_{e}99   ⠀ ⠀\sf\underline\blue{is\: the \:answer!}

⠀⠀

____________________________

\huge\bold\red{Hope \:it \:helps!}

Similar questions