if if a^2(b+c) b^2(c+a) c^2(a+b) are in ap show that either a,b,c are in ap or ab+BC+CA=0
Answers
Answered by
0
Answer:
If x,y,z are in A.P. , xy=z−y
a
2
(b+c)−a
2
(b+c)=c
2
(a+b)−b
2
(c+a)
a
2
b+a
2
c−a
2
b−a
2
c=c
2
a+c
2
b−b
2
c−b
2
a
(a
2
b−a
2
c)+(b
2
a−a
2
b)=(c
2
a−b
2
a)+(c
2
b−b
2
c)
c(b
2
−a
2
)+ab(b−a)=a(c
2
−b
2
)+bc(c−b)
(b−a)[c(b+a)+ab]=(c−b)[a(c+b)+bc]
(b−a)(bc+ac+ab)=(c−b)(ac+bc+ab)
Either ab+bc+ac=0,
b−a=c−b
∴a,b,c are in A.P.
Step-by-step explanation:
pls mark me as brainliest
Similar questions