If if A and B are zeros of the polynomial x square - 11 x + 30 find the value of a cube plus b cube
Answers
Question
If if A and B are zeros of the polynomial x² - 11 x + 30 find the value of a cube plus b cube
Solution
Given :-
- Equation , x² - 11x + 30 = 0
- A & B are zeroes of this equation
Find :-
- Value of A³ - B³
Explanation
Using Formula
★(p+q)² = p² + q² + 2pq
★(p-q)² = p² + q² -2pq
★(p³-q³ = (p-q)(p²+q²+pq)
★ Sum of zeroes = -(Coefficient of x)/(coefficient of x²)
★product of zeroes = (constant part)/(coefficient of x²)
So,
==> Sum of zeroes = -(-11)/1
==> A + B = 11 ------------(1)
And,
==> product of zeroes = 30/1
==> AB = 30 ------------(2)
Squaring both side of equ(1)
==> (A+B)² = 11²
==> A² + B² + 2AB = 121
Keep Value by equ(2)
==> A² + B² = 121 - 2*30
==> A² + B² = 121 - 60
==> A² + B² = 61 ------------(3)
_________________________
Now,
★ (A - B ) = √[(A+B)² -4AB]
Keep Value by equ(1) & equ(2)
==> A - B = √[(11)²-4*30]
==> A - B = √[121-120]
==> A - B = √(1)
==> A - B = 1 -------------(4)
________________________
Now, Calculate
==> (A³ - B³) = (A-B)(A² + B² +AB)
Keep Value by equ(2),(3) & (4)
==> (A³ - B³) = (1) * (61 + 30)
==> (A³ - B³) = 91
________________
Hence
- Value of (A³ - B³) = 91