Math, asked by nissankhatri8, 1 day ago

if if cosθ=x/√x^2-y^2 then prove xsinθ = ycosθ​

Answers

Answered by MysticSohamS
0

Answer:

your solution is as follows

pls mark it as brainliest

Step-by-step explanation:

to \: prove :  \\ x.sin \: θ = y.cos \: θ \\  \\ given \: that :  \\ cos \: θ =  \frac{x}{ \sqrt{x {}^{2}   +  y {}^{2} } }  \\  \\ we \: know \: that \\ sin {}^{2}  \: θ = 1 - cos {}^{2} θ \\  = 1 - ( \frac{x}{ \sqrt{x {}^{2}   +  y {}^{2} } }  \: ) {}^{2}  \\  \\  = 1 -  \frac{x {}^{2} }{x {}^{2}    + y {}^{2} }  \\  \\  =  \frac{x {}^{2}   + y {}^{2} - x {}^{2}  }{x {}^{2} - y {}^{2}  }  \\  \\  =  \frac{y {}^{2} }{x {}^{2}  - y {}^{2} }  \\  \\ sin \: θ =  \frac{y}{ \sqrt{x {}^{2}  - y {}^{2}  } }

thus \: then \: now \: considering \\ x.sin \: θ = y.cos \: θ \\  \\ x \times  \frac{y}{ \sqrt{x {}^{2}  - y {}^{2} } }  = y \times \frac{x}{ \sqrt{x {}^{2}  - y {}^{2} } }  \\  \\  \frac{xy}{   \sqrt{x {}^{2} - y {}^{2}  } } =  \frac{xy}{ \sqrt{x {}^{2} - y {}^{2}  } }  \\  \\ thus \: proved

Similar questions