Math, asked by Samsanthosh, 7 months ago

if if x+1/x =6 then X3+1/x3 find the answer step by step ​

Answers

Answered by rsagnik437
18

Given:-

•Value of (x+1/x)=6

To find:-

•Value of (x³+1/x³)

Solution:-

By cubing both the sides in the equation,(x+1/x)=6,we get:-

 =  > (x +  \frac{1}{x} ) ^{3}  = (6) ^{3}

We know that:-

=>(x+y)³=x³ + y³ + 3xy (x+y)

 =  &gt;  {x}^{3}  +  \frac{1}{x ^{3} }  + 3</strong><strong>×</strong><strong>x</strong><strong>×</strong><strong>1</strong><strong>/</strong><strong>x</strong><strong>   (x +  \frac{1}{x})   = 216

 =  &gt;  {x}^{3}  +  \frac{1}{x ^{3} }  + 3(6) = 216

 =  &gt;  {x}^{3}  +  \frac{1}{x ^{3} }  + 18 = 216

 =  &gt;  {x}^{3}  +  \frac{1}{x ^{3} }  = 216 - 18

 =  &gt;  {x}^{3}  +  \frac{1}{x ^{3} }  = 198

Thus,value of x³+1/x³ is 198.

Some important identities:-

•(a+b)²= a² + b² + 2ab

•(a-b)²= a² + b² - 2ab

•a² - b² = (a-b)(a+b)

•(a+b+c)² = a² + b² + c² + 2(ab + bc +ca)

•(a+b)³ = a³ + b³ + 3ab(a + b)

•(a-b)³ = a³ - b³ - 3ab(a - b)

•a³ + b³ = (a + b)(a² + b² - ab)

•a³ - b³ = (a - b)(a² + b² + ab)

Similar questions