If in a ∆ ABC right angled at B, AB= 6 units BC =6 units, find the value of Sin A. cos C + cos A. sin C.
(Class 10 Maths Sample Question Paper)
Answers
Answered by
4
SOLUTION:
Given :
In ∆ ABC , AB = 6 , BC = 8
AC² = AB² + BC²
AC² = 6² + 8²
AC² = 36 + 64
AC² = 100
AC = √ 100
AC = 10
sin A = P / H = 8/10
cos A = B / H= 6/10
For ∠C , Base = BC, Perpendicular= AB, hypotenuse = AC
sin C = P /H = AB / AC = 6/10
cos C = B / H = BC /AC= 8/ 10
sin A. cos C + cos A. sin C
= (8/10)(8/10) + (6/10)(6/10)
= (64/100) + (36/100)
= (64 +36 )/100
= 100 / 100
= 1
HOPE THIS WILL HELP YOU....
Given :
In ∆ ABC , AB = 6 , BC = 8
AC² = AB² + BC²
AC² = 6² + 8²
AC² = 36 + 64
AC² = 100
AC = √ 100
AC = 10
sin A = P / H = 8/10
cos A = B / H= 6/10
For ∠C , Base = BC, Perpendicular= AB, hypotenuse = AC
sin C = P /H = AB / AC = 6/10
cos C = B / H = BC /AC= 8/ 10
sin A. cos C + cos A. sin C
= (8/10)(8/10) + (6/10)(6/10)
= (64/100) + (36/100)
= (64 +36 )/100
= 100 / 100
= 1
HOPE THIS WILL HELP YOU....
Attachments:
Answered by
0
............. Dont know
Similar questions