Math, asked by trangqabc49, 11 months ago

If in a G.P. t5: t3 = 7:9, then t9:t5​

Answers

Answered by Anonymous
12

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

❚ QuEstiOn ❚

If in a G.P. \ \ {t_5: t_3 = 7:9} , then \ \ {t_9: t_5 } = ?

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

❚ ANsWeR ❚

✺ Given :

  • \ \ {t_5: t_3 = 7:9}

 \longrightarrow\ \ {\dfrac{t_5}{ t_3} =\dfrac{7}{9}}

✺ To FinD :

  • \ \ {t_9: t_5 } = ?

✺ Explanation :

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

❏ G.P. Series:-

If in a G.P. series "a" be the first term and "r" be the common ratio then ,

(1) The n'th term is given by the formula .

\sf\longrightarrow\boxed{ a_n=ar^{n-1} }

(2)Sum of n number of terms ,

\sf\longrightarrow\boxed{ S_n=\frac{n[r{}^{n}-1]}{r-1}}

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

✺ Therefore :

\ \ {\dfrac{t_5}{ t_3} =\dfrac{\cancel{a}r^{5-1}}{\cancel{a}r^{3-1}} }

\ \ {\dfrac{7}{9}=\dfrac{\cancel{r^4}}{\cancel{r^2}}}

\ \ {\dfrac{7}{9}=r^2}

\ \ {\boxed{r^2=\dfrac{7}{9}}}

Hence ,

\ \ {\dfrac{t_9}{ t_5} =\dfrac{\cancel{a}r^{9-1}}{\cancel{a}r^{5-1}} }

\ \ {t_9:t_5=\dfrac{\cancel{r^8}}{\cancel{r^4}}}

\ \ {t_9:t_5=r^4}

\ \ {t_9:t_5=(r^2)^2}

\ \ {t_9:t_5=(\dfrac{7}{9})^2}

\ \ {\red{\large{\boxed{t_9:t_5=\dfrac{49}{81}}}}}

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

Answered by VishnuPriya2801
53

Answer:-

Let , t(5) = a*r⁴ = 7 -- equation (1)

t(3) = ar² = 9 -- equation (2)

given that,

  \frac{ t_{5} }{ t_{3}}   =  \frac{7}{9}

 \frac{a \times  {r}^{4} }{a  \times  {r}^{2} }  =  \frac{7}{9}  \\  \\  {r}^{4}  \times  {r}^{ - 2}  =  \frac{7}{9}  \\  \\  {r}^{2}  =  \frac{7}{9}

Substitute "r²" Value in equation -(1).

ar² = 7

a \times \frac{7}{9}  = 7 \\  \\ a = 7 \times  \frac{9}{7}  \\  \\ a = 9

We know that, t(9) = a*r^8=> a*(r²)⁴

and t(5) = a*r⁴ => a*(r²)²

 \frac{t _9 }{t _{5} }  =  \frac{9 \times  (\frac{7}{9}) ^{4}  }{9 \times ( { \frac{7}{9} }^{2} )}  \\  \\  \frac{ t_{9} }{t _5}   =  (\frac{7}{9} ) ^{4}  -  ({ \frac{7}{9} })^{2}  \\  \\  \frac{ t_{9} }{ t_{5} }  =  \frac{ {7}^{2} }{ {9}^{2} }  \\  \\  \frac{ t_{9} }{ t_{5} }  =  \frac{49}{81}

Similar questions