Math, asked by Anonymous, 6 months ago

If in a quadrilateral, each pair of opposite angles are equal then it is a parallelogram.​

Answers

Answered by llAloneSameerll
5

{\blue{\sf\underline{Given}}}

A quad ABCD in which

\angle \: A = \angle \: C \: and \: \angle \: B = \angle \: C

{\blue{\sf\underline{To\:Prove}}}

ABCD is a ||gm.

{\blue{\sf\underline{Proof\:\:\:We\:Have}}}

\angle \: A = \angle \: C \: and \: \angle \: B = \angle \: D \:  \: (given) \\

 ⇒ \angle \: A + \angle \: B = \angle \: C \:  +  \angle \: D \\

 ⇒ \angle \: A + \angle \: B \:  =  \: \angle \: C \: + \angle \: D \:  =180\degree \:   \\\therefore \:  \angle \: A \:  + \angle \:B + \angle \: C + \angle \: D =360 \degree  \brack \:

Now, the the line segments BC and AD are cut by the transversal AB such that \angle \: A  + \angle \: B =180 \degree

\therefore \: AD || BC \\  \: \therefore \: \angle \: A \: and \: \angle \: B \: are \: co - interior \: \angle \: s\brack

again \: \angle \: A \:  = \angle \: C \: and \: \angle \: D = \angle \: B \:  ⇒ \angle \: A + \angle \: D = \angle \: C + \angle \: B \\

 ⇒ \angle \: A + \angle \: D = \angle \: C \:  +  \: \angle \: B \:  =  \: 180\degree \\ \therefore \: \angle \: A + \angle \: B + \angle \: C + \angle \: D \:  = 360\degree\brack

now the line segments DC and ab are cut by the transversal DA that \angle \: A + \angle \: D \:  = 180\degree

\therefore \: AB || DC \\\therefore \: \angle \: A \: and \: \angle \: D \: are \: co - interior \: \angle \: s \brack

Thus,AB||DC and AD||BC.

Hence,ABCD is a ||gm.

Answered by Anonymous
98

\impliesQυєѕтıσи :

If in a quadrilateral, each pair of opposite angles are equal then it is a parallelogram.

\impliesAиѕωєя :

Given: A quadrilateral ABCD in which opposite angles are equal i.e., ∠A = ∠C ad ∠B = ∠D

To prove: ABCD is a parallelogram i.e, AB ║ DC and AD ║ BC.

Proof: Since, the sum of the angles of quadrilateral is 3600

⇒ ∠A + ∠B + ∠C + ∠D = 3600

⇒ ∠A + ∠D + ∠A + ∠D = 360

[∠A = ∠C and ∠B = ∠D]

⇒ 2∠A = 2∠D = 3600

⇒ ∠A + ∠D = 1800 [Co-interior angle]

⇒ AB ║ DC

∠A + ∠B + ∠C + ∠D = 3600

⇒ ∠A + ∠B + ∠A + ∠B = 3600 [∠A = ∠C and ∠B = ∠D] ⇒ 2∠A + 2∠B = 3600

⇒ ∠A + ∠B = 1800

[∵This is sum of interior angles on the same side of transversal AB]

∴ AD ║ BC So, AB ║ DC and AD ║ BC

\impliesABCD is a parallelogram.


Anonymous: Great!
Similar questions