Math, asked by Brainlyaccount, 1 year ago

If in a triangle ABC, a = 2, b = 3 and c = 4 then find the value of cos2A

Answers

Answered by Swarnimkumar22
14
\bold{\huge{Hay!!}}


\bold{Dear\:user!!}



\bold{\underline{Question-}}

If in a triangle ABC, a = 2, b = 3 and c = 4 then find the value of cos2A


\bold{\underline{Answer-}}


Solution : there a = 2, b = 3, c = 4


Now, using the formula cos \: A =  \frac{ {b}^{2}  +  {c}^{2}  -  {a}^{2} }{2bc}



the, we put the above values


 =  \frac{ {3}^{2} +  {4}^{2}   -  {2}^{2}  }{2 \times 3 \times 4}  \\  \\  \\  =  \frac{9 + 16 - 4}{2 \times 3 \times 4}  \\  \\  \\  =  \frac{25 - 4}{2 \times 3 \times 4}  \\  \\  \\  =  \frac{21}{24}  =  \frac{7}{8}  \\  \\


then, we know that formula cos2A = 2 cos²A - 1

now,


 = 2 \times  \frac{49}{64}  - 1 \\  \\  \\  =  \frac{49}{32}  - 1




cos \: 2A \:  =  \frac{17}{32}



Hence, solved











Answered by CBSEMP
4
Thanks for question !


Here give values are
A=2
B=3
C=4

Using formula of
cos
A
 =  {b}^{2}  +  {c}^{2}  -  {a}^{2}
Now we putting value
 \frac{9 + 16 - 4}{2 \times 3 \times 4}
After solving this we get value
\bf{ \frac{7}{8} } <br /><br />
then, we know that formula cos2A = 2 cos²A - 1

Putting value we get answer
2 \times   \frac{49}{64}  - 1<br /><br /><br />
 =  \frac{49}{32}  - 1
Then we get
cos

A
 =  \frac{17}{32}
Here u get required value !

hopes that helps u !
Similar questions