Math, asked by shubhamrajput8954sam, 8 months ago

If in a triangle abc angle a=pi/6 and b:c=2:sqrt3, find angle b

Answers

Answered by MaheswariS
20

\textbf{Given:}

\text{In $\triangle\,ABC$, $A=\frac{\pi}{6}$ and $b:c=2:\sqrt{3}$}

\textbf{To find:}

\text{Angle B}

\textbf{Solution:}

\text{Consider,}

b:c=2:\sqrt{3}

\implies\,b=2k\,\text{and}\,c=\sqrt{3}k

\text{By cosine formula}

a^2=b^2+c^2-2bc\,cosA

a^2=(2k)^2+(\sqrt{3}k)^2-2(2k)(\sqrt{3}k)\,cos\frac{\pi}{6}

a^2=4k^2+3k^2-2(2k)(\sqrt{3}k)(\frac{\sqrt{3}}{2})

a^2=7k^2-6k^2

a^2=k^2

\implies\,a=k

\text{By Sine formula,}

\dfrac{a}{sinA}=\dfrac{b}{sinB}=\dfrac{c}{sinC}

\implies\dfrac{a}{sinA}=\dfrac{b}{sinB}

\implies\dfrac{k}{sin\frac{\pi}{6}}=\dfrac{2k}{sinB}

\implies\dfrac{k}{\frac{1}{2}}=\dfrac{2k}{sinB}

\implies\dfrac{2k}{1}=\dfrac{2k}{sinB}

\implies\,sinB=1

\implies\bf\,B=\dfrac{\pi}{2}

\textbf{Answer:}

\textbf{Angle B is $\bf\dfrac{\pi}{2}$}

Find more:

In triangle abc angle abc = 90 degree and angle acb = 30 degree then find AB:AC

https://brainly.in/question/14086812

P is the circumcentre of an acute angled triangle ABC with circumradius R . midpoint of BC is D . show that the perimeter of ΔABC is 2R ( sin A + sin B + sinC )

https://brainly.in/question/15260661

Answered by vinodhakaleeswaran
0

Answer:

Step-by-step explanation:

Similar questions