Math, asked by itsdhanusha2518, 9 months ago

If in a triangle ABC,if sinA : sinB : sinC =4 : 5 : 6, then prove that, cosA,: cosB : cosC=12 : 9 : 2.(

Answers

Answered by knjroopa
0

Step-by-step explanation:

Given If in a triangle ABC,if sinA : sinB : sinC = 4 : 5 : 6, then prove that, cosA,: cosB : cosC = 12 : 9 : 2

  • So given sin A : sin B : sin C = 4:5:6
  • Let sin A = 4p, sin B = 5p,  sin C = 6p
  • So a / sin A = b/sin B = c/sin C = k (where k is a constant)
  • So a = k.sin A
  • Or a = k.4xp
  • Similarly b = k sin B  
  • Or b = k.5p
  • So c = k. sin C
  • Or c = k. 6p
  • Now let k.p = m
  • So a = 4m, b = 5m, c = 6m
  • Now cos A = b^2 + c^2 – a^2 / 2bc
  •                   = 25m^2 + 36 m^2 – 16 m^2 / 2 (5m) (6m)
  •                   = m^2 (45) / 60 m^2
  •             Cos A  = ¾
  •        Cos B = a^2 + c^2 – b^2 / 2ac
  •                    = 16m^2 + 36 m^2 – 25 m^2 / 2 (4m)(6m)
  •                    = 27 m^2 / 48 m^2
  •                     = 27 / 48
  •                 Cos B = 9 / 16
  •         Cos C = a^2 + b^2 – c^2 / 2ab
  •                    = 16 m^2 + 25 m^2 – 36 m^2 / 2 (4 m) (5m)
  •                    = 5 m^2 / 40 m^2
  •          Cos C = 1/8
  • So we get  
  •              Cos A = ¾, Cos B = 9/16 and Cos C = 1/8
  • Multiplying by 16 we get
  •              16 Cos A  
  •               16 x ¾
  •                 12
  •          16 Cos B
  •            16 x 9/16
  •                 9
  •           16 Cos C
  •           16 x 1/8
  •                 2
  • So 16 Cos A : 16 Cos B : 16 Cos C = 12 : 9 : 2
  •        Or Cos A : Cos B : Cos C = 12 : 9 : 2  (proved)

Reference link will be

https://brainly.in/question/18227318

Answered by shahanaaz90
1

Answer:

Upper one is perfect ........

Similar questions