Math, asked by ishita9221, 10 months ago

If in a triangle ABC is right angled
at B, AB=6 UNITS, BC = 8 units​

Answers

Answered by tanu8979
4

Answer:

If AB =6 units and

BC =8 units

By Using Pythagorus formula

(AB)^2 +(BC)^2=(AC)^2

(6)^2+(8)^2=AC^2

36+64=(AC)^2

100=(AC)^2

√100=AC

AC=10 units

Answered by SarcasticL0ve
10

Complete question:-

  • If in a triangle ABC is right angled at B, AB=6 UNITS, BC = 8 units then find the value of sinA . cosC + cosA . sinC

Given:-

  • ABC is a right angle triangle
  • ∠ B = 90°
  • AB = 6 units
  • BC = 8 units

To find:-

  • sinA . cosC + cosA . sinC

Solution:-

According to question:-

  • sinA =  \sf \dfrac{8}{10}

  • sinC =  \sf \dfrac{6}{10}

  • cosA =  \sf \dfrac{6}{10}

  • cosC =  \sf \dfrac{8}{10}

\implies sinA . cosC + cosA . sinC

Substituting the values:-

\implies \sf{ \dfrac{8}{10} \times \dfrac{8}{10} + \dfrac{6}{10} \times \dfrac{6}{10}}

\implies \sf{ \dfrac{64}{100} + \dfrac{36}{100}}

\implies \sf{ \dfrac{64 + 36}{100}}

\implies \sf{ \cancel{ \dfrac{100}{100}}}

\implies \bold{\underline{\underline{\boxed{\sf{\red{\dag \; 1}}}}}}

Therefore, sinA . cosC + cosA . sinC = 1

\rule{200}{2}

Attachments:
Similar questions