Math, asked by sandedeepk21, 5 months ago

if in ABC, LC = 90, then sin (A+B) =​

Answers

Answered by ap5495989
1

Answer:

ANSWER

Given that, In ΔABC,∠C=90

0

A+B+C=180

0

A+B=180

0

−90

0

A+B=90

0

........(1)

Then,

a

2

−b

2

a

2

+b

2

sin(A−B)

Using sine rule, and we get,

sinA

a

=

sinB

b

=

sinC

c

=k

(ksinA)

2

−(ksinB)

2

(ksinA)

2

+(ksinB)

2

sin(A−B)

=

sin

2

A−sin

2

B

sin

2

A+sin

2

B

sin(A−B)

=

2

1−cos2A

2

1−cos2B

2

1−cos2A

+

2

1−cos2B

sin(A−B)∴cos2θ=1−2sin

2

θ

=

1−cos2A−1+cos2B

1−cos2A+1−cos2B

sin(A−B)

=

cos2B−cos2A

2−cos2A−cos2B

sin(A−B)

=

cos2B−cos2A

2−(cos2A+cos2B)

sin(A−B)

=

2sin

2

(2B+2A)

sin

2

(2A−2B)

2−(2cos

2

(2A+2B)

cos

2

(2A−2B)

)

sin(A−B)

=

2sin(A+B)sin(A−B)

2−(2cos(A+B)cos(A−B))

sin(A−B)

=

2sin(A+B)sin(A−B)

2−(2cos(A+B)cos(A−B))

sin(A−B)

=

2sin(A+B)

2−(2cos(A+B)cos(A−B))

Now, by equation (1) and we get,

=

2sin90

0

2−(2cos90

0

cos(A−B))

=

2

2−0

=1

Hence, this is the answer.

Similar questions