Math, asked by harrysmarty298, 4 months ago

If in an ap first term is 13 and common difference is -4 then sum of the first 10 term​

Answers

Answered by amansharma264
10

EXPLANATION.

In an A.P.

First term = a = 13.

Common difference = d = -4.

As we know that,

Sum of Nth term of an A.P.

⇒ Sₙ = n/2[2a + (n - 10d].

Using this formula in equation, we get.

⇒ S₁₀ = 10/2[2(13) + (10 - 1)(-4)].

⇒ S₁₀ = 5[26 + (9)(-4)].

⇒ S₁₀ = 5[26 - 36].

⇒ S₁₀ = 5[-10].

⇒ S₁₀ = -50.

                                                                                                                   

MORE INFORMATION.

Supposition of terms in A.P.

(1) = Three terms as : a - d, a, a + d.

(2) = Fourth terms as : a - 3d, a - d, a + d, a + 3d.

(3) = Fifth terms as : a - 2d, a - d, a, a + d, a + 2d.

Answered by MrAnonymous412
92

 \\   \large \underbrace {\underline\bold {Question :- }}

If in an ap first term is 13 and common difference is -4 then sum of the first 10 term

 \\   \large \underbrace {\underline\bold {Solution :- }}

Given that -

 \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bigstar \: First  \: term = a = 13 \\

 \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bigstar \: Common \:  difference = d = (-4) \\

Now , We have to find  \sf \: S_{10} ,

Using following formula ,

 \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \underline{\boxed{ \sf \: S_n = \:  \frac{n}{2}[2a + (n - 1)d]}} \\

Now, Simply put the values in formula,

 \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \implies \: \sf \: S_{10 }= \:  \frac{10}{2}[2 \times 13 + (10 - 1)( - 4)] \\

 \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \implies \: \sf \: S_{10 }= \:  5[26+ 9( - 4)] \\

 \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \implies \: \sf \: S_{10 }= \:  5[26+ ( - 36)] \\

 \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \implies \: \sf \: S_{10 }= \:  5[26 - 36] \\

 \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \implies \: \sf \: S_{10 }= \:  5[ - 10] \\

 \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \implies \:  \underline {\boxed{  \orange{ \frak{\: S_{10 }= \: ( -  50)}}}}\\

Hope it's helpful :)

Similar questions