Math, asked by koenabanerjee2004, 2 months ago

If in an AP ,sum of the pth term is 1/q and qth term is 1/p. Prove that sum of the first(pq) terms is 1/2(pq + 1)​

Answers

Answered by senboni123456
6

Step-by-step explanation:

Let the first term of the given AP be 'a' and common difference be 'd',

Then,

a_{p} =  \frac{1}{q}    \: and \: a_{q}  =  \frac{1}{p}  \\

 \implies \: a + (p - 1)d =  \frac{1}{q} ....(i) \:  \: and \:  \: a + (q - 1)d =  \frac{1}{p } ....(ii) \\

Subtracting both the equations,

 \implies \:  \{a + (p - 1)d  \} - \{a + (q - 1)d \}=  \frac{1}{q}   -  \frac{1}{p }  \\

 \implies \:  a + (p - 1)d - a  -  (q - 1)d \}=  \frac{p - q}{pq}   \\

 \implies \:   \{(p - 1)  -  (q - 1) \}d =  \frac{p - q}{pq}   \\

 \implies \:   \{p - 1  -  q  +  1 \}d =  \frac{p - q}{pq}   \\

 \implies \:   (p -  q   )d =  \frac{p - q}{pq}   \\

 \implies \:   d =  \frac{1}{pq}   \\

putting the value of d in equation (i),

a + (p - 1). \frac{1}{pq}  =  \frac{1}{q}  \\

 \implies \: a +  \frac{1}{q}  -  \frac{1}{pq}  =  \frac{1}{q}  \\

 \implies \: a   =   \frac{1}{pq}  \\

Now, sum of first pq terms is

S _{pq} =  \frac{pq}{2} .[2. \frac{1}{pq}  + (pq - 1) \frac{1}{pq} ] \\

 \implies \: S _{pq} =  \frac{pq}{2} .[ \frac{2}{pq}  + 1 -  \frac{1}{pq} ] \\

 \implies \: S _{pq} =  \frac{pq}{2} .[ \frac{1}{pq}  + 1 ] \\

 \implies \: S _{pq} =  \frac{(1 + pq)}{2}  \\

Similar questions