If in figure AB||CD, angel PCD=130° and angel PBA=140°, then find angel BPC.
Answers
Draw HQ parallel to AB and CD.
Then, angleB + angleP=180°(co-interior)
140°+angle P=180°
angleBPH=180-140
BPH=40°
similarly ,130+CPQ=180(co-interior)
CPQ=180-130
CPQ=50°
Now,
CPQ+BPH+BPC=180°(linear pair)
50° + 40°+BPC=180°
BPC=180°-90°
BPC=90°
☜☆☞☜☆☞☜☆☞☜☆☞☜☆☞☜☆☞
Constructions :- Draw a line EF parallel to AB.
=> EF|| CD|| AB
BP is a transversal.
angle ABP + angle BPE = 180° [ Sum of angles on same side of transversal is 180°]
140° + angle BPE = 180°
angle BPE = 180° - 140°
angle BPE = 40°
CP is a transversal.
angle PCD + angle CPF = 180° [ Sum of angles on same side of transversal is 180°]
130° + angle CPF = 180°
angle CPF = 180° - 130°
angle CPF = 50°
angle CPF + angle BPE + angle BPC = 180° [ Sum of angles on a straight line is 180°]
=> 50° + 40° + angle BPC = 180°
=> 90° + angle BPC = 180°
=> angle BPC = 180° - 90°
=> angle BPC = 90°
HOPE IT HELPS YOU....