Math, asked by zasha, 1 year ago

if in figure P two tangents RQ and RP are drawn from an external point R to the circle with Centre O if prq equals to 120 degrees and prove that V = PR + RQ

Answers

Answered by nandanv99
1

Answer:


Step-by-step explanation:

∠OPR = ∠OQR = 90° ---- 1 




And in ΔOPR and ΔOQR 




∠OPR = ∠ OQR = 90° (from equation 1) 




OP = OQ (Radii of same circle) 




And  




OR = OR (common side) 




ΔOPR = ΔOQR (ByRHS Congruency) 




So, RP = RQ --- 2 




And  ∠ORP = ∠ORQ --- 3 




∠PRQ = ∠ORP + ∠ORQ 




Substitute ∠PQR = 120° (given)  




And from equation 3 we get 




∠ORP + ∠ORP = 120° 




2 ∠ORP = 120° 




∠ORP = 60° 




And we know cos 0 = Adjacent/hypotenuse 




So in ΔOPR we get  




Cos ∠ORP = PR/OR 




Cos 60° = PR/OR 




½ = PR/OR (we know cos 60° = ½) 




OR = 2PR 




OR = PR + PR (substitute value from equation 2 we get) 




OR = PR  +  RQ


hense proved

Similar questions