Math, asked by namku, 1 year ago

if in tan h inversex instead of x we have 3x-2 then what will the formula be ?


namku: yes
namku: instead of x , 3x-2 is given in thr question
rational: whats stopping you from simply replacing "x" by "3x-2" ?
rational: tanh^-1(3x-2) = 1/2ln[(3x-2+1)/(3x-2-1)]
rational: = 1/2ln[(3x-1)/(3x-3)]
rational: easy right.. or am i missing something..
namku: oh ok i thought we cant replace k thanks
namku: y dont u write it in an ans ? ill give a thanks
rational: we can replace like that, "x" is just a dummy place holder
rational: cos(monkey) = sin(pi/2 - monkey)

Answers

Answered by rational
1
Recall the identity
\tanh^{-1}(\clubsuit)=\frac{1}{2}\ln \frac{\clubsuit+1}{\clubsuit-1}

Therefore
\tanh^{-1}(3x-2)

=\frac{1}{2}\ln \frac{3x-2+1}{3x-2-1}

=\frac{1}{2}\ln \frac{3x-1}{3x-3}

kvnmurty: i guess you gave definition of hyperbolic cot x.
namku: yeah bymistake
rational: Ahh possible... can't trust my memory >.<
namku: hahaha u even remeber formulas ? i have to keep checking
rational: lol not rly, just happen to remember it (incorrectly) because i have used it recently...
Answered by kvnmurty
2
The formula  for  tanh⁻¹ x:

 tanh^{-1}x=\frac{1}{2} Ln\ [\frac{1+x}{1-x}],\ \ \ | x | &lt; 1\\\\we\ have\ |3x-2| &lt;  1\\3x-2\ &lt; 1,\ \ \ = &gt;\ \ \ \ x &lt;  1\\3x-2 &gt;  -1,\ \ \ = &gt;\  \ \ \ x &gt; \frac{1}{3}\\\\tanh^{-1}(3x-2)\\\\=\frac{1}{2}\ Ln\ [ \frac{1+3x-2}{1-(3x-2)} ]\\\\=\frac{1}{2}\ Ln\ [ \frac{3x-1}{3-3x} ],\ \ \ \frac{1}{3} &lt;  x &lt;  1\\\\=\frac{1}{2}\ Ln\ [\frac{3x-1}{1-x}]-\frac{1}{2}\ Ln\ 3,\ \ \ \frac{1}{3} &lt;  x &lt;  1\\\\OR,\\\\\frac{1}{2}\ Ln\ [ \frac{3(x-1)+2}{3(1-x)} ]\\\\=\frac{1}{2}\ Ln\ [ \frac{2}{3(1-x)} - 1 ]



kvnmurty: please click on thanks blue button above
Similar questions