Math, asked by rajeshsurisetty1055, 1 year ago

If In triangle ABC a =9, b = 8, and c=4,prove that cos b - 2 cos c= -4/3

Answers

Answered by MaheswariS
3

Answer:

cosB-2\:cosC=\frac{-4}{3}

Step-by-step explanation:

I have applied cosine formula to solve this problem

\text{Cosine formula:}

\boxed{cosB=\frac{c^2+a^2-b^2}{2ca}\:and\:cosC=\frac{a^2+b^2-c^2}{2ab}}

cosB-2\:cosC

=\frac{c^+a^2-b^2}{2ca}-2(\frac{a^2+b^2-c^2}{2ab})

=\frac{4^2+9^2-8^2}{2(4)(9)}-2(\frac{9^2+8^2-4^2}{2(9)(8)})

=\frac{16+81-64}{72}-\frac{81+64-16}{72}

=\frac{33}{72}-\frac{129}{72}

=\frac{-96}{72}

=\frac{-4}{3}

\implies\:\boxed{cosB-2\:cosC=\frac{-4}{3}}

Similar questions