If in triangle ABC , sin A sin C = sin ( A- B ) sin ( B - C ) prove that a 2 , b 2 , c 2 are in A.P
Answers
Answered by
0
Answer:
sinA=sin(B−C)sin(A−B)
sin(π−(A+B)sin(π−(B+C)=sin(B−C)sin(A−B)
sin(A+B)sin(B+C)=sin(B−C)sin(A−B)
2sin(B+C)sin(B−C)=2sin(A+B)sin(A−B)
cos2C−cos2B=cos2B−cos2A
2cos2B=cos2A+cos2C
2(1−2sin2B)=2−2sin2A−2sin2C
1−2sin2B=1−sin2A−sin2C
2sin2B=sin2A+sin2C
Hence,
sin2A,sin2B,sin2C are in A.P.
Hence, by sine rule a2,b2,c
Mark as Brainlist and follow plzzzzz
Similar questions