Math, asked by anaskt888, 3 months ago

if in two circles ,arc of the same length subtend angles 60°and 75°at the centre , find the ratio of their radii​

Answers

Answered by Avni2348
8

  \huge\color{navy} \mathtt{Answer}

 \rm{we \: know \: that} \ \\ \boxed{l = r \theta}

 \sf{there \: are \: 2 \: circles \: of \: different \: radius}

 \sf{  \therefore \: the \: radius \: be \: denoted \: by \: r_1 \: and \: r_2}

 \sf{length \: of \: arc \: of \: {l}^{st} \: circle}

l=r_1\theta\\ l= r_1 \times 60\degree \\  l= r_1 \times 60\degree \times  \frac{\pi}{180 \degree }   \\ l=  r_1 \frac{\pi}{3}

 \sf{length \: of \: arc \: of \:  {ll}^{nd} \: cirlce }

l = r_2 \theta \\ l = r_2 \times 75 \degree \\ l = r_2 \times 75 \degree \times  \frac{\pi}{180 \degree} \\ l = r_2 \times  \frac{5\pi}{12}

 \sf{it \: is \: given \: that \: arc \: are \: of \: same \: length \: }

  \color{teal}{ \because \: length \: of \:  {l}^{st} arc = length \: of \:  {ll}^{nd} \: arc  }

 \large{r_1 \times  \frac{\pi}{3} = r_2 \times  \frac{5\pi}{12} }

 \frac{r_1}{r_2 }=  \frac{5\pi}{12}  \times  \frac{3}{\pi}  \\  \frac{r_1}{r_2}  =  \frac{5}{4}

 \therefore \:  \sf{r_1 \ratio \: r_2 = 5 \ratio4}

Attachments:
Similar questions