Math, asked by athirasaji262001, 10 months ago

If integral of (x^-3)5^(1/x^2)dx=k5^(1/x^2), then k is equal to?

Answers

Answered by pulakmath007
7

SOLUTION

GIVEN

\displaystyle \int\limits_{}^{}  {x}^{ - 3}  \:  {5}^{ \frac{1}{ {x}^{2} } }  \, dx  = k  \times {5}^{ \frac{1}{ {x}^{2} } }  + c

TO DETERMINE

The value of k

EVALUATION

Here the given Integral

\displaystyle \int\limits_{}^{}  {x}^{ - 3}  \:  {5}^{ \frac{1}{ {x}^{2} } }  \, dx

Let

\displaystyle  \: y =  \frac{1}{ {x}^{2} }

 \implies\displaystyle  \: y =  {x}^{ - 2}

Differentiating both sides with respect to x we get

\displaystyle  \:  \frac{dy}{dx}  =  - 2 {x}^{ - 3}

 \implies\displaystyle  \:   -  \frac{1}{2} dy =   {x}^{ - 3}  dx

 \therefore \:  \: \displaystyle \int\limits_{}^{}  {x}^{ - 3}  \:  {5}^{ \frac{1}{ {x}^{2} } }  \, dx

  \:  \: \displaystyle  = -  \frac{1}{2}    \int\limits_{}^{}    \:  {5}^{ y }  \, dy

  \:  \: \displaystyle  = -  \frac{1}{2}     \times  \frac{ {5}^{y} }{ \ln 5}  + c

  \:  \: \displaystyle  = -  \frac{1}{2 \ln 5}     \times  {5}^{ \frac{1}{ {x}^{2} } }   + c

  \therefore  \: \displaystyle  -  \frac{1}{2 \ln 5}     \times  {5}^{ \frac{1}{ {x}^{2} } }   + c  = k  \times {5}^{ \frac{1}{ {x}^{2} } }   + c

Comparing both sides we get

  \: \displaystyle k =  -  \frac{1}{2 \ln 5}

FINAL ANSWER

  \: \displaystyle k =  -  \frac{1}{2 \ln 5}

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. a

∫ x/2+x⁸ dx ,Evaluate it.

-a

https://brainly.in/question/5382314

2. Cos^-1(1-9^x/1+9^x) differentiate with respect to x

https://brainly.in/question/17839008

Similar questions