If internal bisector of angle B and angle C intersect at P, prove that angle PBO=90 and angle BOC+angle BPC=180
Answers
Answer:
∠ACB and ∠QCB form a linear pair,
So, ∠ACB + ∠QCB = 180º
=> ∠ACB/2 + ∠QCB/2 = 180º /2
=> ∠ACB/2 + ∠QCB/2 = 90º
Again since PC and QC are the angle bisectors
=> ∠PCB + ∠BCQ = 90º
=> ∠PCQ = 90º
Similarlry,
∠PBQ = 90º
In qradrilateral BPCQ,
Sum of all four angles = 360º
=> ∠BPC + ∠PCQ + ∠CQB + ∠QBP = 360º
=> ∠BPC + ∠BQC + 180º = 360º
=> ∠BPC + ∠BQC = 360º - 180º
=> ∠BPC + ∠BQC = 180º
=> ∠P = ∠Q = 90º [Since ∠PCQ = ∠PBQ = 90º]
Step-by-step explanation:
pls mark me brainliest
Answer:
ok
Step-by-step explanation:
Answer:
∠ACB and ∠QCB form a linear pair,
So, ∠ACB + ∠QCB = 180º
=> ∠ACB/2 + ∠QCB/2 = 180º /2
=> ∠ACB/2 + ∠QCB/2 = 90º
Again since PC and QC are the angle bisectors
=> ∠PCB + ∠BCQ = 90º
=> ∠PCQ = 90º
Similarlry,
∠PBQ = 90º
In qradrilateral BPCQ,
Sum of all four angles = 360º
=> ∠BPC + ∠PCQ + ∠CQB + ∠QBP = 360º
=> ∠BPC + ∠BQC + 180º = 360º
=> ∠BPC + ∠BQC = 360º - 180º
=> ∠BPC + ∠BQC = 180º
=> ∠P = ∠Q = 90º [Since ∠PCQ = ∠PBQ = 90º]
Step-by-step explanation:
pls mark me brainliest