Math, asked by dashingda2506, 2 months ago

If α is a root of 25cos^2θ + 5cosθ -12 = 0, π/2 < α < π, then sin2α is equal to *

Answers

Answered by MysticSohamS
0

Answer:

hey here is your answer

pls mark it as brainliest

Step-by-step explanation:

so \: here \: given \: trigo  \: quadratic \: equation \: is \: 25cos^2θ + 5cosθ -12 = 0

also \:  α  \: is \:  a \:  root  of \:  25cos^2θ + 5cosθ -12 = 0

but \: here \:  \: theta \: is \: its \: permissible \: and \: posible \: given \: root

thus \: then \:  \alpha  = theta

so \: now \: thus \: considering \:  25cos^2θ + 5cosθ -12 = 0

 = 25 \:  \cos \: square \: theta + 20 \: cos \: theta - 15 \: cos \: theta - 12 = 0

 = 5cos \: theta(5cos \: theta + 4) -3(5cos \: theta + 4) = 0

 = (5cos \: theta + 4)(5cos \: theta - 3) = 0

ie \: cos \: theta =  - 4 \div 5 \\ or \\ cos \: theta =3 \div 5

but \: as \: π/2 &lt; α &lt; π \\ alpha \: ie \: theta \: lies \: in \: quadrant \: 2

so \: in \: quadrant \: 2 \\ sine \: and \: cosec \: are \: positive \:  \: and \: other \: trigonometric \: ratios \: are \: negative

thus \: cos \: \alpha  = 3 \div 5 \: is \: absurd \\ so \: cos \:  \alpha  =  - 4 \div 5

thus \: then \: using \\ sin \: square \:  \alpha  + cos \: square \:  \alpha  = 1

so \: sin \: square \:  \alpha  = 1 - cos \: square \:  \alpha

substitute \: value \: of \: cos \:  \alpha  \\ we \: get \: sin \: square \:  \alpha  = 3 \div 5

hence \: value \: of \: sin \: square \: alpha \: is \: 3 \div 5

Similar questions