Math, asked by sharanyalanka7, 1 month ago

If 'α' is a root of the equation 4x² = 2x - 1 then '4α³ - 3α' is :-

a) root
b) not a root
c) sum of the roots
d) product of the roots​

Answers

Answered by mathdude500
27

\large\underline{\sf{Solution-}}

Given that

\red{\rm :\longmapsto\: \alpha  \:is \: the \: root \: of \:  {4x}^{2}   = 2x - 1}

can be rewritten as

\red{\rm :\longmapsto\: \alpha  \:is \: the \: root \: of \:  {4x}^{2} - 2x  + 1 = 0}

\bf\implies \: {4\alpha  \:}^{2} - 2\alpha  \: + 1 = 0

or

\bf\implies \: {4\alpha  \:}^{2}  =  2\alpha  \:  -  1 -  -  - (1)

Now,

Consider,

\red{\rm :\longmapsto\: {4\alpha  \:}^{3}  - 3 \alpha }

can be rewritten as

\rm \:  =  \:  \: \alpha  \:( {4\alpha  \:}^{2} ) - 3\alpha  \:

On Substituting the value from equation (1), we get

\rm \:  =  \:  \: \alpha  \:( 2\alpha  \: - 1 ) - 3\alpha  \:

\rm \:  =  \:  \:  {2\alpha  \:}^{2}  -\alpha  \: -  3\alpha  \:

\rm \:  =  \:  \:  {2\alpha  \:}^{2}  -4\alpha  \:

\rm \:  =  \:  \:\dfrac{1}{2} \bigg(  {4\alpha  \:}^{2}  -8\alpha  \: \bigg)

On substituting the value from equation (1), we get

\rm \:  =  \:  \:\dfrac{1}{2} \bigg(  2 \alpha  - 1  -8\alpha  \: \bigg)

\rm \:  =  \:  \:\dfrac{1}{2} \bigg( - 1  -6\alpha  \: \bigg)

\rm \:  =  \:  \: -  \: \dfrac{1}{2} - 3\alpha  \:

Now, It implies,

\red{\rm :\longmapsto\: {4\alpha  \:}^{3}  - 3 \alpha  =  -  \: \dfrac{1}{2}  - 3 \alpha }

Let we check, whether its a root or not.

So, Let we substitute the above value in

\red{\rm :\longmapsto\: {4x}^{2}  = 2x - 1}

\rm :\longmapsto\:4 {\bigg( - \dfrac{1}{2}   - 3\alpha  \:\bigg) }^{2} = 2\bigg( - \dfrac{1}{2}  - 3 \alpha  \bigg)  - 1

\rm :\longmapsto\:4 {\bigg( - \dfrac{(1 + 6\alpha  \:)}{2}  \:\bigg) }^{2} = 2\bigg( - \dfrac{1 + 6\alpha  \:}{2}  \bigg)  - 1

\red{\rm :\longmapsto\: {(1 + 6\alpha  \:)}^{2} =  - (1 + 6\alpha  \:) - 1}

\rm :\longmapsto\:1 +  {36\alpha  \:}^{2} + 12\alpha  \: =  - 1 - 6\alpha  \: - 1

\rm :\longmapsto\:  {36\alpha  \:}^{2} =  - 3 - 18\alpha

\rm :\longmapsto\:  {12\alpha  \:}^{2} =  - 1 - 6\alpha

\rm :\longmapsto\: 3 {(4\alpha  \:}^{2}) =  - 1 - 6\alpha

\rm :\longmapsto\: 3 (2 \alpha  - 1) =  - 1 - 6\alpha

\rm :\longmapsto\: 6 \alpha  -3 =  - 1 - 6\alpha

\bf\implies \: {4\alpha  \:}^{3} - 3\alpha  \: \: is \: not \: the \: root \: of \: given \: equation.

Now, Let we check its sum of the roots.

We know,

\boxed{\red{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

\red{\rm :\longmapsto\:\alpha  \: - \dfrac{1}{2} - 3\alpha  \: =  - \dfrac{( - 2)}{4}}

\red{\rm :\longmapsto\:  \: - \dfrac{1}{2} - 2\alpha  \: =  \dfrac{1}{2}}

which is not true.

Now, Check the Product of the roots

We know,

\boxed{\red{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}}}}

\red{\rm :\longmapsto\:\alpha  \: \times \bigg( - \dfrac{1}{2} - 3 \alpha  \bigg)  = \dfrac{1}{4}}

Which is not true

  • Hence, Option (b) is correct.
Answered by rajalakshmimd85
1

Answer:

Option b is correct answer

Similar questions