Math, asked by 6698, 6 months ago

If ɵ is an acute angle and sin ɵ = cos ɵ , find the value of 2 tan ² ɵ + sin ² ɵ -1.​

Answers

Answered by Anonymous
6

Answer:

sin©=cos©

tan©=1

2tan^2©+sin^2©-1

2+sin^2©-1

1+sin^2©

Answered by Anonymous
98

Given:

 \sf \to \sin \theta = \cos \theta

Find:

 \sf \to 2{\tan}^{2} \theta  + {\sin}^{2} \theta  - 1

Solution:

 \sf Let, \: denote \:  \theta  \: with \: A

\sf \sin A = \cos A

\sf \dfrac{\sin A}{\cos A} = 1

\sf we,  \: know \:  that  \:  \dfrac{\sin A}{\cos A} =  \tan A

\sf Hence, \tan A  = 1

\sf \to but \: we \: know \: that \tan  {45}^{\circ}  = 1

\sf Hence,A =  {45}^{\circ}

So,

 \sf \to 2{\tan}^{2} A  + {\sin}^{2} A  - 1

 \sf \to 2{\tan}^{2} {45}^{\circ}  + {\sin}^{2} {45}^{\circ}  - 1

where,

  • tan² 45° = 1
  • sin² 45° = 1/2

So,

 \sf \to 2{\tan}^{2} {45}^{\circ}  + {\sin}^{2} {45}^{\circ}  - 1

 \sf \to 2 \times {(1)}^{2} + {(\dfrac{1}{ \sqrt{2}})}^{2}   - 1

 \sf \to 2 \times 1 + \dfrac{1}{2}  - 1

 \sf \to 2 + \dfrac{1}{2}  - 1

 \sf \to \dfrac{4 + 1 - 2}{2}

 \sf \to \dfrac{5 - 2}{2}

 \sf \to \dfrac{3}{2}

 \sf \therefore  2{\tan}^{2} \theta  + {\sin}^{2} \theta  - 1 =  \dfrac{3}{2}

Similar questions