If θ is an acute angle such that
, ![\frac{sin\Thetatan\Theta-1}{2tan^{2}\Theta}= \frac{sin\Thetatan\Theta-1}{2tan^{2}\Theta}=](https://tex.z-dn.net/?f=%5Cfrac%7Bsin%5CThetatan%5CTheta-1%7D%7B2tan%5E%7B2%7D%5CTheta%7D%3D)
(a)![\frac{16}{625} \frac{16}{625}](https://tex.z-dn.net/?f=%5Cfrac%7B16%7D%7B625%7D)
(b)![\frac{1}{36} \frac{1}{36}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B36%7D)
(c)![\frac{3}{160} \frac{3}{160}](https://tex.z-dn.net/?f=%5Cfrac%7B3%7D%7B160%7D)
(d)
Answers
Answered by
5
SOLUTION :
The correct option is (c)= 3/160
Given : cos θ = 3/5
cot θ = Base / hypotenuse = ⅗
Base = 3 , Hypotenuse = 5
In right angled ∆,
Hypotenuse² = ( perpendicular)² + (Base)²
[By Pythagoras theorem]
5² = ( perpendicular)² + 3²
25 = ( perpendicular)² + 9
(perpendicular)² = 25 - 9 = 16
perpendicular² = 16
perpendicular = √16 = 4
perpendicular = 4
sin θ = perpendicular/hypotenuse = 4/5
sin θ = ⅘
tan θ = perpendicular/base = 4/3
tan θ = 4/3
The value of : sin θ tan θ - 1 / 2tan² θ
= (⅘ × 4/3) -1 / [ 2× (4/3)²]
= (16/15 - 1) / [2 × 16/9]
= [(16 - 15)/15] / 32/9
= (1/15) / (32/9)
= 1/15 × 9/32
= 3/ 5 × 32
sin θ tan θ - 1 / 2tan² θ = 3/ 160
Hence, the value of sin θ tan θ - 1 / 2tan² θ is 3/160 .
HOPE THIS ANSWER WILL HELP YOU…
Answered by
4
Refer to the attachment please.
Attachments:
![](https://hi-static.z-dn.net/files/d53/82c5fe32429b3331877fd4ca164e19f5.jpg)
![](https://hi-static.z-dn.net/files/dbe/ea4b6cbaab84ee3b5690fbb09687c037.jpg)
Similar questions