Math, asked by StrongGirl, 9 months ago

If ω iS an imaginary cube root of unity such that (2 + ω)² = a+ bω, a. b ∈ R then value of a + b is

Attachments:

Answers

Answered by mantu9000
1

We have:

(2+\omega)^2 = a + bω

We have to find, the value of a + b = ?

Solution:

(2+\omega)^2 = a + bω

⇒ 4 + 2(2)ω + \omega^2 = a + bω

⇒ 4 + 4ω + \omega^2 = a + bω

Comparing the values of a and b, we get

a = 4 and b = 4

a + b = 4 + 4 = 8

Thus, the required option is "3) a + b = 8".

Answered by pulakmath007
19

\displaystyle\huge\red{\underline{\underline{Solution}}}

FORMULA TO BE IMPLEMENTED

Since  \omega \: is a cube root of unity

So

1 +  \omega +  { \omega}^{2}  = 0 \:  \:  \: and \:  \:  \:  { \omega}^{3}  = 1

GIVEN

{(2 +  \omega)}^{2}  = a + b \omega

TO DETERMINE

The value of a + b

EVALUATION

Here

{(2 +  \omega)}^{2}  = a + b \omega

 \implies \: 4 + 4 \omega \:  +   {\omega}^{2}  = a + b \omega

 \because \:  \: 1 + \omega \:  +   {\omega}^{2}  = 0

So

 4 + 4 \omega \:  +   {\omega}^{2}  = a + b \omega \:  \:  \:   \:  \: \: gives \:  \:

4 + 4 \omega \:   - 1 -  \omega = a + b \omega

 \implies \: 3 + 3 \omega \:  = a + b \omega

Comparing real and imaginary parts we get

a = 3 \:  \:  \: and \:  \:  \: b = 3

Hence a + b = 3 + 3 = 6

Similar questions