If ∆ is an operation such that for integers a and b we have,
a ∆ b = a×b–2×a×b+b×b(–a)×b+b×b
Then find (–7) ∆ (–1)
Answers
Answered by
1
Answer:
aΔb=a×b−2×a×b+b×b(−a)×b+b×b
So,
i.
4Δ(−3)=[4×(−3)]−[2×4×(−3)]+[(−3)×(−3)(−4)×(−3)]+[(−3)×(−3)]
=[−12]−[−24]+[108]+[9]
=−12+24+108+9
=−12+141
=129
ii.
(−7)Δ(−1)=[(−7)×(−1)]−[2×(−7)×(−1)]+[(−1)×(−1)(7)×(−1)]+[(−1)×(−1)]
=7−14+[−7]+1
=7−14−7+1
=8−21
=−13
Now (−3)Δ4=[(−3)×4]−[2(−3)×4]+[4×4(3)×4]+[4×4]
=−12+24+192+16
=−12+232
=220
Therefore, [4Δ(−3)=129]
=[(−3)Δ4=220]
Now, case II:
(−1)Δ(−7)=[(−1)×(−7)]−[2×(−1)×(−7)]+[(−7)×(−7)(1)×(−7)]+[(−7)×(−7)]
=7−14−343+49
=56−357
=−301
Therefore, [−7Δ(−1)=−13]
=[(−1)Δ(−7)=−301]
Similar questions