Math, asked by aryan021212, 1 day ago

If it is given that

 {e}^{x}  +  {e}^{y}  =  {e}^{x + y} \:

prove \: that \:  \frac{dy}{dx}  =  -  {e}^{y - x}

Answers

Answered by mathdude500
17

\large\underline{\sf{Solution-}}

Given that,

\rm \:  {e}^{x} +  {e}^{y} = {e}^{x + y} \\

can be rewritten as

\rm \:  {e}^{x} +  {e}^{y} = {e}^{x} \: {e}^{y} \\

can be further rewritten as

\rm \: \dfrac{{e}^{x} + {e}^{y}}{{e}^{x} \: {e}^{y}}  = 1 \\

\rm \: \dfrac{{e}^{x}}{{e}^{x} \: {e}^{y}} + \dfrac{{e}^{y}}{{e}^{x} \: {e}^{y}}   = 1 \\

\rm \: \dfrac{1}{{e}^{y}}  + \dfrac{1}{{e}^{x}}  = 1 \\

\rm \: {e}^{ - y} + {e}^{ - x} = 1 \\

On differentiating both sides w. r. t. x, we get

\rm \:\dfrac{d}{dx}( {e}^{ - y} + {e}^{ - x}) = \dfrac{d}{dx}1 \\

We know,

\boxed{\sf{  \:\dfrac{d}{dx}{e}^{x} = {e}^{x} \: }} \\

and

\boxed{\sf{  \:\dfrac{d}{dx}k \:  =  \: 0 \: }} \\

So, using these results, we get

\rm \: {e}^{ - y}\dfrac{d}{dx}( - y) + {e}^{ - x}\dfrac{d}{dx}( - x) = 0 \\

\rm \:  - {e}^{ - y}\dfrac{dy}{dx}  -  {e}^{ - x} = 0 \\

\rm \:  {e}^{ - y}\dfrac{dy}{dx}  =  -  {e}^{ - x} \\

\rm \: \dfrac{dy}{dx}  \: =  \:  -  \: \dfrac{{e}^{ - x}}{{e}^{ - y}}

\rm\implies \:\dfrac{dy}{dx} \:  =  \:  - \:  {e}^{y - x} \\

Hence, Proved

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Answered by kvalli8519
21

Refer the given attachment

Attachments:
Similar questions