Math, asked by manpoo2201, 5 months ago

If J is Jacobian prove that JJ' = 1.

Answers

Answered by pulakmath007
9

SOLUTION

TO PROVE

If J is Jacobian prove that JJ' = 1

EVALUATION

Let u and v are two functions of x and y

J = \displaystyle\begin{vmatrix}   \frac{ \partial u}{ \partial x}  &  \frac{ \partial u}{ \partial y} \\ \\  \frac{ \partial v}{ \partial x}  &  \frac{ \partial v}{ \partial y} \end{vmatrix}

Now

J ' = \displaystyle\begin{vmatrix}   \frac{ \partial x}{ \partial u}  &  \frac{ \partial y}{ \partial u} \\ \\  \frac{ \partial x}{ \partial v}  &  \frac{ \partial y}{ \partial v} \end{vmatrix}

 = \displaystyle\begin{vmatrix}   \frac{ \partial x}{ \partial u}  &  \frac{ \partial x}{ \partial v} \\ \\  \frac{ \partial y}{ \partial u}  &  \frac{ \partial y}{ \partial v} \end{vmatrix}

Interchanging row and column

∴ JJ'

= \displaystyle\begin{vmatrix}   \frac{ \partial u}{ \partial x}  &  \frac{ \partial u}{ \partial y} \\ \\  \frac{ \partial v}{ \partial x}  &  \frac{ \partial v}{ \partial y} \end{vmatrix}.  \displaystyle\begin{vmatrix}   \frac{ \partial x}{ \partial u}  &  \frac{ \partial x}{ \partial v} \\ \\  \frac{ \partial y}{ \partial u}  &  \frac{ \partial y}{ \partial v} \end{vmatrix}

 = \displaystyle\begin{vmatrix}   \frac{ \partial x}{ \partial u}  &  \frac{ \partial x}{ \partial v} \\ \\  \frac{ \partial y}{ \partial u}  &  \frac{ \partial y}{ \partial v} \end{vmatrix}

 = \displaystyle\begin{vmatrix}   1  &  0 \\ \\  0  & 1 \end{vmatrix}

 = 1

Hence proved

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. the jacobian of p,q,r with respect to x,y,z where p=x+y+z ,q=y+z,r=z

https://brainly.in/question/33073346

2. If u=y2/2x , v = x/2+y2/2x find ∂(u,v)/ ∂(x,y).

https://brainly.in/question/25724416

Similar questions