If k-1/k=3 then find the value of k³-1/k³
Answers
Answered by
5
k - (1/k) = 3
Required= k^3 - (1/k)^3
We know that
(a-b)^3 = a^3 - b^3 -3ab(a-b)
(a-b)^3 + 3ab(a-b) = a^3 - b^3
here a = k , b= 1/k
(a-b)^3 + 3ab(a-b) = a^3 - b^3
(k -(1/k))^3 + 3×k×1/k (k - 1/k) = k^3 - 1/k^3
(k -(1/k))^3 + 3×1×(k - (1/k)) = k^3 - 1/k^3
substituting given value
(3)^3 + 3(3) = k^3 - 1/k^3
27 + 9 = k^3 - 1/k^3
36 = k^3 - 1/k^3
Required= k^3 - (1/k)^3
We know that
(a-b)^3 = a^3 - b^3 -3ab(a-b)
(a-b)^3 + 3ab(a-b) = a^3 - b^3
here a = k , b= 1/k
(a-b)^3 + 3ab(a-b) = a^3 - b^3
(k -(1/k))^3 + 3×k×1/k (k - 1/k) = k^3 - 1/k^3
(k -(1/k))^3 + 3×1×(k - (1/k)) = k^3 - 1/k^3
substituting given value
(3)^3 + 3(3) = k^3 - 1/k^3
27 + 9 = k^3 - 1/k^3
36 = k^3 - 1/k^3
Similar questions