Math, asked by Krethik278, 1 year ago

If k+1=sec^2 (1+sin)(1-sin),then find the value of k

Answers

Answered by Anonymous
19

Given

K + 1 = sec²∅(1 + sin∅)(1 - sin∅)

→ K + 1 = sec²∅(1 - sin²∅)

→ K + 1 = sec²∅.cos²∅

→ K + 1 = 1

→ K = 0

Answered by Anonymous
13

\Large{\underline{\underline{\red{\mathfrak{Answer :}}}}}

k = 0

\large{\underline{\underline{\red{\mathfrak{Step-By-Step-Explanation :}}}}}

k + 1 = Sec²A (1 + SinA)(1 - SinA)

⇒k + 1 = Sec²A [(1)² - (SinA)²]

{\boxed{\tt{As, \: (a \: + \: b) (a \: - \: b)  \: = \: a^2 \: - \: b^2}}}

⇒k + 1 = Sec²A [1 - Sin²A]

As we know,

\Large{\boxed{\sf{1 \: - \: Sin^2A \: = \: Cos^2A}}}

Put Values

⇒k + 1 = Sec²A(Cos²A)

As we know,

\Large{\boxed{\sf{SecA \: = \: \frac{1}{Cos}}}}

⇒k + 1 = Sec²A(1/Sec²A)

⇒k + 1 = Sec²A/Sec²A

⇒k + 1 = 1

⇒k = 1 - 1

⇒k = 0

\LARGE \implies {\boxed{\boxed{\sf{k \: = \: 0}}}}

___________________________

#answerwithquality

#BAL

Similar questions